ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-02-01
    Description: The 6 April 2009 Mw 6.3 L'Aquila earthquake, central Italy, has been recorded by the Irpinia Seismic Network (ISNet) about 250 km southeast of the epicenter. Up to 19 three-component accelerometer stations could be used to infer the main source parameters with different seismological methods. We obtained an approximate location of the event from arrival times and array-based back-azimuth measurements and estimated the local magnitude (6.1) from an attenuation relation for southern Italy. Assuming an omega-square spectral model, we inverted S-wave displacement spectra for moment magnitude (6.3), corner frequency (0.33 Hz), stress drop (2.5 MPa), and apparent stress (1.6 MPa). Waveform modeling using a point source and an extended-source model provided consistent moment tensors with a centroid depth around 6 km and a prevalently normal fault plane solution with a dominant directivity toward the southeast. The relatively high corner frequency and an overestimated moment magnitude of 6.4 from moment tensor inversions are attributed to the rupture directivity effect. To image the rupture geometry, we implemented a beamforming technique that back-projects the recorded direct P-wave amplitudes into the earthquake source region. A northwest-southeast striking rupture of 17 km length is imaged, propagating with an average velocity up to 3 km/s. This value is significantly higher than our estimate of 2.2 km/s from S-wave spectra. Our case study demonstrates that the use of array techniques and a dense accelerometer network can provide quick and robust estimates of source parameters of moderate-sized earthquakes located outside the network.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-06-01
    Description: In this paper, we adopt three ground-motion simulation techniques (the stochastic finite-fault simulation code from Motazedian and Atkinson, 2005; the hybrid deterministic-stochastic approach with approximated Green's functions from Pacor et al., 2005; and the broadband hybrid integral-composite technique with full-wavefield Green's functions from Gallovi[c] and Broke[s]ova, 2007), with the aim of investigating the different performances in near-fault strong-motion modeling and prediction from past and future events. The test case is the 1980 M 6.9 Irpinia earthquake, the strongest event recorded in Italy in the last 30 years. First, we simulate the recorded strong-motion data and validate the model parameters by computing spectral acceleration and peak amplitude residual distributions. The validated model is then used to investigate the influence of site effects and to compute synthetic ground motions around the fault. Afterward, we simulate the expected ground motions from scenario events on the Irpinia fault, varying the hypocenters, the rupture velocities, and the slip distributions. We compare the median ground motions and related standard deviations from all scenario events with empirical ground-motion prediction equations (GMPEs). The synthetic median values are included in the median {+/-} 1 standard deviation of the considered GMPEs. Synthetic peak ground accelerations show median values smaller and with a faster decay with distance than the empirical ones. The synthetics total standard deviation is of the same order or smaller than the empirical one, and it shows considerable differences from one simulation technique to another. We decomposed the total standard deviation into its between-scenario and within-scenario components. The larger contribution to the total sigma comes from the latter, while the former is found to be smaller and in good agreement with empirical interevent variability.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-04-01
    Description: Rapid evaluation of strong ground-shaking maps after moderate-to-large earthquakes is crucial to recognizing those areas where the largest damage and losses are expected. These maps play a fundamental role for emergency management. This is particularly important for areas having high seismic risk potential and covered by dense seismic networks. In near-real-time applications, ground-shaking maps are produced by integrating recorded data and estimates obtained by using ground-motion predictive equations, which assume point-source models. However, particularly for large earthquakes, improvements in the predictions of the peak ground motion can be obtained when fault extension and orientation are available. In fact, detailed source information allows one to use a more robust source-to-site distance metric compared with hypocentral distance.In this paper, a technique for estimating both fault extent (in terms of its surface projection) and dominant rupture direction is presented. This technique can be used in near-real-time ground-motion map calculation codes with the aim of improving ground-motion estimates with respect to a point-source model. The model parameters are estimated by maximizing a probability density function based on the residuals between observed and predicted peak-ground-motion quantities, the latter obtained by using predictive equations. The model space to be investigated is defined through a Bayesian approach, and it is explored by a grid-searching technique. The effectiveness of the proposed technique is demonstrated by offline numerical tests using data from three earthquakes occurring in different seismotectonic environments. The selected earthquakes are the 17 August 1999 Mw 7.5 Kocaeli (Turkey) earthquake, the 6 April 2009 Mw 6.3 L’Aquila (Italy) earthquake, and the 17 January 1994 Mw 6.7 Northridge (California) earthquake. The obtained results show that the proposed technique allows for fast and first order estimates of the fault extent and dominant rupture direction, which could be used to improve ground-shaking map calculations.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-12-01
    Description: We present a nonlinear technique for the purpose of estimating the distribution of the final slip and the rupture velocity on the fault plane from the inversion of strong-motion records. In this work, the ground-motion simulation is obtained by evaluating the representation integral in the frequency domain, through a finite-element approach, based on a Delaunay’s triangulation of the fault plane. The slip distribution is parameterized by a linear combination of 2D overlapping Gaussian functions. This choice allows us to relate the maximum frequency in the data to the smallest resolvable wavelength on the fault plane, insuring a smooth representation for the slip function. We investigate the capability of such a representation to describe complex slip maps, and we relate the width of the Gaussian function and the overlapping to the minimum wavelength of the slip function. The inverse problem is solved by a two-step procedure aimed at separating the computation of the rupture velocity from the evaluation of the slip distribution. While a global exploration is maintained for the rupture velocity, for each explored value of this quantity, the slip solution is computed as the best solution approaching the observations in the sense of the L2 norm. The nonlinear step is performed through the neighborhood algorithm (NA), while the linear one uses the nonnegative least-squares (NNLS) method. The technique has been applied to retrieve the rupture history of the 2008 Iwate–Miyagi, Japan, earthquake. The slip distribution is characterized by a large slip patch extending from the hypocenter to the southern shallow part of the fault plane, with a maximum amplitude of 6 m. In addition, a relatively smaller asperity is located in the north shallow part of the fault. We found that the rupture lasted about 12 s with an average rupture velocity of about 2.0 km/s. Online Material: Figures showing synthetic inversion test results.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-12-01
    Description: We investigate the possibility of inferring the dominant horizontal-rupture direction for moderate earthquakes from the inversion of peak ground-motion parameters. To this aim, we adopt a technique that was devised and applied to large earthquakes for retrieving both the dominant rupture direction and the surface fault projection to be used with a proper distance metric to refine the ShakeMap computation. In the present paper, the procedure was applied to three moderate earthquakes that occurred in 2012 in Northern Italy three days apart: the M  4.2 Pre-Alpi Venete earthquake on 24 January, the M  4.9 Reggio Emilia earthquake on 25 January, and the M  5.4 Parma earthquake on 27 January. For two of the three analyzed events, the technique identifies a dominant horizontal-rupture direction, which is consistent with the strike directions inferred from the focal mechanisms. For the M  5.4 event, which is a deep (about 61 km) thrust-faulting mechanism earthquake, the inferred dominant rupture direction allows identification of the northeast-dipping plane as the fault plane in accordance with the aftershocks distribution.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-07-05
    Description: We present an approach to infer the slip and rupture velocity distributions on the fault plane from the non-linear inversion of the apparent source time functions, obtained from the empirical Green's function deconvolution method. The main advantage of this technique is that it allows overcoming, in the forward modelling, the limitations related to the computation of the Green's function, as the choice of a correct and reliable earth propagation model. We perform a parameter resolution and uncertainty study, which is based on the analysis of the misfit function in the neighbourhood of the best-fitting model. In this paper, we present the results obtained by applying the technique to synthetic and real records from an M w 4 event which occurred during the 2009 L’Aquila (central Italy) aftershock sequence. Results show a heterogeneous slip distribution, characterized by two main high slip patches located NW of the hypocentre and an average slip of 3.7 cm, corresponding to a seismic model of about 0.82  x 10 15 Nm.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-03-12
    Description: ShakeMap package uses empirical ground motion prediction equations (GMPEs) to estimate the ground motion where recorded data are not available. The GMPEs, however, account only for average characteristics of source and wave propagation processes and the ground motion estimate can fail in the near-source area when few stations are available. In this study, we investigate the performance of ShakeMap in the near-fault area when source effects are included at different levels of complexity. We focus on the 2008, M w 7.0, Iwate-Miyagi Nairiku (Japan) earthquake because of the large amount of recording stations which contribute to the definition of a reference shakemap. After shutting off some stations from the original data set, we evaluate the resulting shakemaps bias as if the earthquake was recorded at a smaller number of receivers. We then compute the shakemaps replacing the missing records with synthetic seismograms from a hybrid deterministic-stochastic method for extended fault. We suppose an increasing knowledge of seismic source approximation and of the slip history on the fault, obtained both from the expeditious inversion of teleseismic data and, afterwards, from strong-motion data inversion. In particular, a non-linear kinematic inversion technique allowed us to retrieve a complete kinematic description of the source process on the fault plane. Our results reveal that the integration of real data with synthetics is quite efficient, providing reliable shaking maps mainly when near source recordings are scarce. However, the accuracy of the fault plane position plays a major role in increasing the effectiveness of the results. We then apply the methodology to a poorly instrumented earthquake of similar magnitude, the 1980, M s 6.9, Irpinia (Southern Italy) earthquake. When the peak motions inferred from synthetic seismograms are included in the database, the fit with respect to the observed Mercalli–Cancani–Sieberg intensities improves.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-06-12
    Description: We present an analysis of the reliability of focal mechanisms obtained through moment tensor inversion at the Irpinia Seismic Network, southern Italy. Our analysis is based on the methods proposed by Zahradník and Custódio (2012) and Sokos and Zahradník (2013) . We present two different studies: (1) we compute maps of theoretical focal mechanism resolution for the Irpinia region and (2) we study the reliability of the solutions obtained from waveform inversion of five regional earthquakes. Theoretically, we find that when data error is the dominant source of error, focal mechanism resolution is better close to the spots of higher station density rather than at the center of the network. Using real data, we were able to successfully study four of the five regional events, in spite of the large source–station distances (up to ~280 km) and significant azimuthal gaps (〉319°). We used variance reduction, double-couple percentage, signal-to-noise ratio, condition number, and focal mechanism variability index to assess the quality of the solutions. Our quality assessment is validated by comparison with independent focal mechanism solutions.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-11-02
    Description: The Emilia seismic sequence (Northern Italy) started on May 2012 and caused 17 casualties, severe damage to dwellings and forced the closure of several factories. The total number of events recorded in one month was about 2100, with local magnitude ranging between 1.0 and 5.9. We investigate potential mechanisms (static and dynamic triggering) that may describe the evolution of the sequence. We consider rupture directivity in the dynamic strain field and observe that, for each main earthquake, its aftershocks and the subsequent large event occurred in an area characterized by higher dynamic strains and corresponding to the dominant rupture direction. We find that static stress redistribution alone is not capable of explaining the locations of subsequent events. We conclude that dynamic triggering played a significant role in driving the sequence. This triggering was also associated with a variation in permeability and a pore pressure increase in an area characterized by a massive presence of fluids. Scientific Reports 3 doi: 10.1038/srep03114
    Electronic ISSN: 2045-2322
    Topics: Natural Sciences in General
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-08-13
    Description: The space–time distribution of coseismic slip of the 2011 February 21, M w 6.2, Christchurch earthquake, New Zealand, is explored, differently from all previous studies, through a joint inversion of geodetic and strong-motion data. The geodetic data consist of both global position system (GPS), from campaign and continuous stations, and synthetic aperture radar (SAR) interferograms from two ascending satellite tracks. The strong motion data consist of 10 stations located in the Canterbury plains, these stations offering a good azimuthal coverage of the event. The kinematic rupture model for the analysed event was obtained using the parametrization and non-linear inversion scheme proposed by Delouis et al. In particular, for any subfault we explore for the local source time function (local slip history), slip direction and rupture onset time. The geometry of the fault plane used for the kinematic inversion is inferred from the analysis of the geodetic data. To validate our results we perform a resolution study for both the single and complete data sets, and an errors analysis of our final kinematic rupture model. Considering the complexity highlighted by superficial deformation data, we adopted a fault model consisting of two partially overlapping segments, with dimensions 15  x 11 and 7  x 7 km 2 , corresponding to different faulting types. This two-fault model, instead of single-fault model, is needed to reconstruct the complex shape of the superficial deformation data. The total seismic moment resulting from the joint inversion is 3.0  x 1025 dyne · cm ( M w  = 6.2) with an average rupture velocity of 2.0 km s –1 .
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...