ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2010-2014  (6)
  • 1
  • 2
    Publication Date: 2014-11-04
    Description: Late Cenozoic climate history in Africa was punctuated by episodes of variability, characterized by the appearance and disappearance of large freshwater lakes within the East African Rift Valley. In the Baringo-Bogoria basin, a well-dated sequence of diatomites and fluviolacustrine sediments documents the precessionally forced cycling of an extensive lake system between 2.70 Ma and 2.55 Ma. One diatomite unit was studied, using the oxygen isotope composition of diatom silica combined with X-ray fluorescence spectrometry and taxonomic assemblage changes, to explore the nature of climate variability during this interval. Data reveal a rapid onset and gradual decline of deepwater lake conditions, which exhibit millennial-scale cyclicity of ~1400–1700 yr, similar to late Quaternary Dansgaard-Oeschger events. These cycles are thought to reflect enhanced precipitation coincident with increased monsoonal strength, suggesting the existence of a teleconnection between the high latitudes and East Africa during this period. Such climatic variability could have affected faunal and floral evolution at the time.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-08-02
    Description: The Indian Peak–Caliente caldera complex and its surrounding ignimbrite field were a major focus of explosive silicic activity in the eastern sector of the subduction-related southern Great Basin ignimbrite province during the middle Cenozoic (36–18 Ma) ignimbrite flareup. Caldera-forming activity migrated southward through time in response to rollback of the subducting lithosphere. Nine partly exposed, separate to partly overlapping source calderas and an equal number of concealed sources compose the Indian Peak–Caliente caldera complex. Calderas have diameters to as much as 60 km and are filled with as much as 5000 m of intracaldera tuff and wall-collapse breccias. More than 50 ignimbrite cooling units, including 22 of regional (〉100 km 3 ) extent, are distinguished on the basis of stratigraphic position, chemical and modal composition, 40 Ar/ 39 Ar age, and paleomagnetic direction. The most voluminous ash flows spread as far as 150 km from the caldera complex across a high plateau of limited relief—the Great Basin altiplano, which was created by late Paleozoic through Mesozoic orogenic deformation and crustal thickening. The resulting ignimbrite field covers a present area of ~60,000 km 2 in east-central Nevada and southwestern Utah. Before post-volcanic extension, ignimbrites had an estimated aggregate volume of ~33,000 km 3 . At least seven of the largest cooling units were produced by super-eruptions of more than 1000 km 3 . The largest, at 5900 km 3 , originally covered an area of 32,000 km 2 to outflow depths of hundreds of meters. Outflow ignimbrite sequences comprise as many as several cooling units from different sources with an aggregate thickness locally reaching a kilometer; sequences are almost everywhere conformable and lack substantial intervening erosional debris and angular discordances, thus manifesting a lack of synvolcanic crustal extension. Fallout ash in the mid-continent is associated with two of the super-eruptions. Ignimbrites are mostly calc-alkalic and high-K, a reflection of the unusually thick crust in which the magmas were created. They have a typical arc chemical signature and define a spectrum of compositions that ranges from high-silica (78 wt%) rhyolite to andesite (61 wt% silica). Rhyolite magmas were erupted in relatively small volumes more or less throughout the history of activity, but in a much larger volume after 24 Ma in the southern part of the caldera complex, creating ~10,000 km 3 of ignimbrite. The field has some rhyolite ignimbrites, the largest of which are in the south and were emplaced after 24 Ma. But the most distinctive attributes of the Indian Peak–Caliente field are two distinct classes of ignimbrite: 1. Super-eruptive monotonous intermediates. More or less uniform and unzoned deposits of dacitic ignimbrite that are phenocryst rich (to as much as ~50%) with plagioclase 〉 biotite quartz hornblende 〉 Fe-Ti oxides ± sanidine, pyroxene, and titanite; apatite and zircon are ubiquitous accessory phases. These tuffs were deposited at 31.13, 30.06, and 29.20 Ma in volumes of 2000, 5900, and 4400 km 3 , respectively, from overlapping, multicyclic calderas. A unique, and possibly kindred, phenocryst-rich latite-andesite ignimbrite with an outflow volume of 1100 km 3 was erupted at 22.56 Ma from a concealed source caldera to the south. 2. Trachydacitic Isom-type tuffs. Also relatively uniform but phenocryst poor (〈20%) with plagioclase 〉〉 clinopyroxene orthopyroxene Fe-Ti oxides 〉〉 apatite. These alkali-calcic tuffs are enriched in TiO 2 , K 2 O, P 2 O 5 , Ba, Nb, and Zr and depleted in CaO, MgO, Ni, and Cr, and have an arc chemical signature. Magmas were erupted from a concealed source immediately after and just to the southeast of the multicyclic monotonous intermediates. Most of their aggregate outflow volume of 1800 km 3 was erupted from 27.90 to 27.25 Ma. Nothing like this couplet of distinct ignimbrites, in such volumes, have been documented in other middle Cenozoic volcanic fields in the southwestern U.S. where the ignimbrite flareup is manifest. Magmas were created in unusually thick crust (as thick as 70 km) where large-scale inputs of mantle-derived basaltic magma powered partial melting, assimilation, mixing, and differentiation processes. Dacite and some rhyolite ignimbrites were derived from relatively low-temperature (700–800 °C), water-rich magmas that were a couple of log units more oxidized than the quartz-fayalite-magnetite (QFM) oxygen buffer at depths of ~8–12 km. In contrast to these "main-trend" magmas, trachydacitic Isom-type magmas were derived from drier and hotter (~950 °C) magmas originating deeper in the crust (to as deep as 30 km) by fractionation processes in andesitic differentiates of the mantle magma. "Off-trend" rhyolitic magmas that are both younger and older than the Isom type but possessed some of their same chemical characteristics possibly reflect an ancestry involving Isom-type magmas as well as main-trend rhyolitic magmas. Andesitic lavas extruded during the flareup but mostly after 25 Ma constitute a roughly estimated 12% of the volume of silicic ignimbrite, in contrast to major volcanic fields to the east, e.g., the Southern Rocky Mountain field, where the volume of intermediate-composition lavas exceeds that of silicic ignimbrites.
    Electronic ISSN: 1553-040X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-12-04
    Description: One of the greatest global manifestations of explosive silicic volcanism in the terrestrial rock record occurred during the middle Cenozoic over a large part of southwestern North America, from the Great Basin of Nevada and western Utah into Colorado, Arizona, New Mexico, and Mexico. This subduction-related ignimbrite flareup is the only one known in the world of its magnitude and of Mesozoic or Cenozoic age that is not related to continental breakup. The southern Great Basin ignimbrite province was a major product of the flareup. Its central and eastern sectors developed on the Great Basin altiplano, a high orogenic plateau of limited relief dating from pulses of late Paleozoic through Mesozoic orogenic contractile deformation. Caldera-forming activity migrated southwestward through time in response to rollback of a once-flat slab of subducting lithosphere. In the central sector of the southern Great Basin ignimbrite province, 11 partly exposed, mostly overlapping source calderas and one concealed source comprise the 36–18 Ma Central Nevada caldera complex. Calderas have diameters as much as 50 km, to possibly 80 km. Intracaldera tuff and intercalated wall-collapse breccia are at least 2000 m thick. Surrounding outflow ignimbrites consist of 17 regional cooling units (〉200 km 3 ) that have been correlated over two or more mountain ranges on the basis of stratigraphic position, paleomagnetic direction, chemical and modal composition, and 40 Ar/ 39 Ar age. Many additional smaller cooling units have been recognized. Possibly as many as eight of the ignimbrites resulted from super-eruptions of 1000 km 3 to as much as 4800 km 3 . This Central Nevada ignimbrite field is presently exposed over an area of ~65,000 km 2 in south-central Nevada and had a volume of 25,000 km 3 corrected for post-volcanic crustal extension. Six of the largest eruptions broadcast ash flows over an extension-corrected area of greater than 16,000 km 2 and as much as 160 km from their caldera sources. Individual sections of outflow tuff include as many as 14 ignimbrite cooling units; aggregate thicknesses locally reach a kilometer, and stacks a few hundred meters thick are common. Sequences are almost everywhere conformable and lack substantial intervening erosional debris and angular discordances that would testify to synvolcanic crustal extension. Beds of fallout ash a few meters thick associated with the largest eruption have been recognized in the mid-continent of the U.S. Six caldera-forming eruptive episodes are separated by five lulls in activity, each lasting from 1.7 to 4.4 m.y., during which time little (〈200 km 3 ) or no ignimbrite was deposited. Some of the longer lulls that preceded the most voluminous eruptions likely reflected the time for accumulation of magma in huge shallow chambers before eruption was triggered. Other long lulls preceded the last two, single eruptions as the arc magma-generating system was waning prior to the transition to non-arc magma production to the south in the Southwestern Nevada volcanic field. Central Nevada ignimbrites are mostly calc-alkalic and high-K with trace element patterns typical of subduction-related arcs; they range from high-silica (78 wt%) rhyolite to low-silica (63 wt%) dacite. Most ignimbrites are rhyolite, from the earliest to the latest eruptions in the field, and most of these are phenocryst rich. The largest ignimbrite (4800 km 3 ), emplaced at 31.69 Ma, is a phenocryst-rich, normally zoned rhyolite-dacite. Three monotonous intermediate cooling units of relatively uniform phenocryst-rich dacite were erupted in rapid succession at 27.57 Ma; they have an estimated aggregate volume of 4500 km 3 . These "main-trend" rhyolite and dacite ignimbrites were derived from relatively low-temperature (700–800 °C), water-rich magmas that equilibrated a couple of log units more oxidized than the QFM (quartz-fayalite-magnetite) oxygen buffer with an assemblage of plagioclase, sanidine, quartz, biotite, Fe-Ti oxides, zircon, and apatite with or without hornblende, pyroxene, and titanite at depths of ~8–12 km. Magmas were created in unusually thick crust (~60 km) as large-scale inputs of mantle-derived basaltic magma powered partial melting, assimilation, mixing, and differentiation processes. "Off-trend" ignimbrites include cooling units of the 600 km 3 trachydacitic Isom-type tuffs that contain sparse phenocrysts of plagioclase, clino- and ortho-pyroxene, and Fe-Ti oxides derived from drier and hotter magmas. These magmas erupted immediately after the monotonous intermediates, from ca. 27 to 23 Ma, and were derived by fractionation from andesitic differentiates of the mantle-derived magmas in the deeper crust. Younger, off-trend rhyolitic magmas possessed some of the same unusually high TiO 2 , K 2 O, Zr, and Ba contents as those of the Isom type and may be rhyolitic differentiates of Isom-type trachydacites or rhyolitic melts contaminated with Isom-type magma. The distinctive couplet of monotonous intermediates and trachydacitic Isom-type tuffs in the Central Nevada field is found in much greater volume in the coeval Indian Peak–Caliente field to the east, where monotonous intermediates have an extension corrected volume of 12,300 km 3 and Isom-type tuffs have a volume of 4200 km 3 . However, in the rhyolite-dominant Western Nevada field to the west, monotonous intermediates have not been recognized and trachydacitic Isom-type tuffs occur in only very small volumes, probably no more than 50 km 3 total. These composition-volume contrasts appear to be related to the crustal thickness that diminished westward during the middle Cenozoic ignimbrite flareup. The distinctive couplet of ignimbrites has not been recognized elsewhere, to our knowledge, in the flareup fields in southwestern North America. Extrusion of intermediate-composition lavas at the inception of the ignimbrite flareup in the northeastern part of the Central Nevada field created large lava piles. Later extrusions from 33 to 24 Ma were virtually absent but modest activity resumed thereafter and persisted until the end of the ignimbrite flareup. All together, the volume of andesitic lava is less than one-tenth the volume of contemporaneous silicic ignimbrite; like proportions occur in the ignimbrite fields to the west and east in the southern Great Basin ignimbrite province. This small proportion, together with the absence of basalt lavas, reflects the unusually thick crust in which silicic magmas were being generated during the ignimbrite flareup. In sharp contrast, flareups in volcanic fields elsewhere in the southwestern U.S. resulted in subordinate ignimbrite relative to lavas.
    Electronic ISSN: 1553-040X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-09-15
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...