ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-04-01
    Description: Weakness of the San Andreas Fault revealed by samples from the active fault zone Nature Geoscience 4, 251 (2011). doi:10.1038/ngeo1089 Authors: B. M. Carpenter, C. Marone & D. M. Saffer Understanding the strength and slip behaviour of tectonic faults is a central problem in earthquake physics and seismic-hazard assessment. Many major faults, including the San Andreas Fault, are weak compared with the surrounding rock, but the cause of this weakness is debated. Previous measurements of the frictional strength of San Andreas Fault rocks are too high to explain the observed weakness. However, these measurements relied on samples taken at a distance from the active fault or from weathered surface samples. Recent drilling into the San Andreas Fault has provided material from the actively slipping fault at seismogenic depths. Here we present systematic measurements of the frictional properties and composition of the San Andreas Fault at 2.7 km depth, including the wall rock and active fault. We find that the fault is weak relative to the surrounding rock and that the fault rock exhibits stable sliding friction behaviour. The fault zone contains the weak mineral smectite and exhibits no frictional healing—bonds in the material do not heal after rupture. Taken together, the low inherent strength and lack of healing of the fault-zone material could explain why the San Andreas Fault slips by aseismic creep and small earthquakes in central California, rather than by large, destructive earthquakes.
    Print ISSN: 1752-0894
    Electronic ISSN: 1752-0908
    Topics: Geosciences
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-04-21
    Description: Among the most fascinating, recent discoveries in seismology are the phenomena of dynamically triggered fault slip, including earthquakes, tremor, slow and silent slip—during which little seismic energy is radiated—and low frequency earthquakes. Dynamic triggering refers to the initiation of fault slip by a transient deformation perturbation, most often in the form of passing seismic waves. Determining the frictional constitutive laws and the physical mechanism(s) governing triggered faulting is extremely challenging because slip nucleation depths for tectonic faults cannot be probed directly. Of the spectrum of slip behaviors, triggered slow slip is particularly difficult to characterize due to the absence of significant seismic radiation, implying mechanical conditions different from triggered earthquakes. Slow slip is often accompanied by nonvolcanic tremor in close spatial and temporal proximity. The causal relationship between them has implications for the properties and physics governing the fault slip behavior. We are characterizing the physical controls of triggered slow slip via laboratory experiments using sheared granular media to simulate fault gouge. Granular rock and glass beads are sheared under constant normal stress, while subjected to transient stress perturbation by acoustic waves. Here we describe experiments with glass beads, showing that slow and silent slip can be dynamically triggered on laboratory faults by ultrasonic waves. The laboratory triggering may take place during stable sliding (constant friction and slip velocity) and/or early in the slip cycle, during unstable sliding (stick-slip). Experimental evidence indicates that the nonlinear-dynamical response of the gouge material is responsible for the triggered slow slip.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-01-28
    Description: We present a unified analysis of physical properties of cataclastic fault rocks collected from surface exposures of the central Alpine Fault at Gaunt Creek and Waikukupa River, New Zealand. Friction experiments on fault gouge and intact samples of cataclasite were conducted at 30–33 MPa effective normal stress (σn′) using a double-direct shear configuration and controlled pore fluid pressure in a true triaxial pressure vessel. Samples from a scarp outcrop on the southwest bank of Gaunt Creek display (1) an increase in fault normal permeability (k = 7.45 × 10−20 m2 to k = 1.15 × 10−16 m2), (2) a transition from frictionally weak (μ = 0.44) fault gouge to frictionally strong (μ = 0.50–0.55) cataclasite, (3) a change in friction rate dependence (a-b) from solely velocity strengthening, to velocity strengthening and weakening, and (4) an increase in the rate of frictional healing with increasing distance from the footwall fluvioglacial gravels contact. At Gaunt Creek, alteration of the primary clay minerals chlorite and illite/muscovite to smectite, kaolinite, and goethite accompanies an increase in friction coefficient (μ = 0.31 to μ = 0.44) and fault-perpendicular permeability (k = 3.10 × 10−20 m2 to k = 7.45 × 10−20 m2). Comminution of frictionally strong (μ = 0.51–0.57) cataclasites forms weaker (μ = 0.31–0.50) foliated cataclasites and fault gouges with behaviors associated with aseismic creep at low strain rates. Combined with published evidence of large magnitude (Mw ∼ 8) surface ruptures on the Alpine Fault, petrological observations indicate that shear failure involved frictional sliding within previously formed, velocity-strengthening fault gouge.
    Electronic ISSN: 1525-2027
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-10-31
    Description: Observations of heterogeneous and complex fault slip are often attributed to the complexity of fault structure and/or spatial heterogeneity of fault frictional behavior. Such complex slip patterns have been observed for earthquakes on normal faults throughout central Italy, where many of the M w 6 to 7 earthquakes in the Apennines nucleate at depths where the lithology is dominated by carbonate rocks. To explore the relationship between fault structure and heterogeneous frictional properties, we studied the exhumed Monte Maggio Fault (MMF), located in the northern Apennines. We collected intact specimens of the fault zone, including the principal slip surface and hanging wall cataclasite, and performed experiments at a normal stress of 10 MPa under saturated conditions. Experiments designed to reactivate slip between the cemented principal slip surface and cataclasite show a 3 MPa stress drop as the fault surface fails, then velocity-neutral frictional behavior and significant frictional healing. Overall, our results suggest that 1) earthquakes may readily nucleate in areas of the fault where the slip surface separates massive limestone and are likely to propagate in areas where fault gouge is in contact with the slip surface; 2) postseismic slip is more likely to occur in areas of the fault where gouge is present; and 3) high rates of frictional healing and low creep relaxation observed between solid fault surfaces could lead to significant aftershocks in areas of low stress drop.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-04-18
    Description: Electromagnetic signals have been reported in association with geophysical phenomena including earthquakes, landslides, and volcanic events. Mechanisms suggested to explain seismo-electrical signals include: triboelectricity, piezoelectricity, streaming potentials, and the migration of electron holes, yet the origin of such phenomena remains poorly understood. We present results from laboratory experiments regarding the relationship between electrical and mechanical signals for frictional stick-slip events in sheared soda-lime glass bead layers. The results are interpreted in the context of lattice defect migration and granular force chain mechanics. During stick-slip events, we observe two distinct behaviors delineated by the attainment of a frictional stick-slip steady-state. During initial shear loading, layers charge during stick-slip events and the potential of the system rises. After steady-state stick-slip behavior is attained, the system begins to discharge. Co-seismic signals are characterized by potential drops superimposed on a longer-term trend. We suggest that the observed signal is a convolution of two effects: charging of the forcing blocks and signals associated with the stress state of the material. The long-term charging of the blocks is accomplished by grain boundary movement during theinitial establishment of force chain networks. Short-term signals associated with stick-slip events may originate from produced electron holes. Applied to tectonic faults, our results suggest that electrical signals generated during frictional failure may provide a way to monitor stress and the onset of earthquake rupture. Potential changes could produce detectable signals that may forecast the early stages of failure, providing a modest warning of the event.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-08-21
    Description: Earthquakes normally occur as frictional stick-slip instabilities, resulting in catastrophic failure and seismic rupture. Tectonic faults also fail in slow earthquakes with rupture durations of months or more, yet their origin is poorly understood. Here, we present laboratory observations of repetitive, slow stick-slip in serpentinite fault zones and mechanical evidence for their origin. We document a transition from unstable to stable frictional behavior with increasing slip velocity, providing a mechanism to limit the speed of slow earthquakes. We also document reduction of P-wave speed within the active shear zone before stick-slip events. If similar mechanisms operate in nature, our results suggest that higher-resolution studies of elastic properties in tectonic fault zones may aid in the search for reliable earthquake precursors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kaproth, Bryan M -- Marone, C -- New York, N.Y. -- Science. 2013 Sep 13;341(6151):1229-32. doi: 10.1126/science.1239577. Epub 2013 Aug 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Geosciences, and Energy Institute Center for Geomechanics, Geofluids and Geohazards, Pennsylvania State University, University Park, PA 16802, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23950495" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-11-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bolukbasi, Burcu -- Berente, Nicholas -- Cutcher-Gershenfeld, Joel -- Dechurch, Leslie -- Flint, Courtney -- Haberman, Michael -- King, John Leslie -- Knight, Eric -- Lawrence, Barbara -- Masella, Ethan -- McElroy, Charles -- Mittleman, Barbara -- Nolan, Mark -- Radik, Melanie -- Shin, Namchul -- Thompson, Cheryl A -- Winter, Susan -- Zaslavsky, Ilya -- Allison, M Lee -- Arctur, David -- Arrigo, Jennifer -- Aufdenkampe, Anthony K -- Bass, Jay -- Crowell, Jim -- Daniels, Mike -- Diggs, Stephen -- Duffy, Christopher -- Gil, Yolanda -- Gomez, Basil -- Graves, Sara -- Hazen, Robert -- Hsu, Leslie -- Kinkade, Danie -- Lehnert, Kerstin -- Marone, Chris -- Middleton, Don -- Noren, Anders -- Pearthree, Genevieve -- Ramamurthy, Mohan -- Robinson, Erin -- Percivall, George -- Richard, Stephen -- Suarez, Celina -- Walker, Doug -- New York, N.Y. -- Science. 2013 Nov 29;342(6162):1041-2. doi: 10.1126/science.342.6162.1041-b.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Labor and Employment Relations, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24288316" target="_blank"〉PubMed〈/a〉
    Keywords: *Access to Information ; Periodicals as Topic/*economics ; Research/*economics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-12-15
    Description: Faulting and brittle deformation of mantle rocks occurs in many tectonic settings such as oceanic transform faults, oceanic detachment faults, subduction zones, and continental rifts. However, few data exist that directly explore the frictional properties of peridotite rocks. Improved constraints on the brittle deformation of peridotite is important for a more complete understanding of the rheological properties of the lithosphere. Furthermore, our comparatively detailed understanding of plastic deformation in olivine allows us to explore the possible role of thermally activated intracrystalline deformation mechanisms in macroscopically brittle processes. It has been hypothesized, and some experimental data indicate, that plastic yielding by dislocation glide (low temperature plasticity) determines the direct effect in the rate and state frictional constitutive formulation. Plastic flow may also have important implications for the blunting or necking at asperity contacts that influences the time and/or displacement dependent friction evolution effect and frictional healing. We present results from saw cut experiments on fine grained synthetic olivine fault gouge conducted in a gas-medium deformation apparatus in the temperature range of 400–1000°C with 100 MPa confining pressure. We conducted velocity stepping tests to explore the rate and temperature dependence of sliding stability. We also conducted slide-hold-slide experiments to investigate the time and temperature dependence of fault zone restrengthening (frictional healing). The mechanical data and microstructural observations allow us to explore the role of thermally activated processes in frictional sliding. The data indicate systematic temperature dependenceof rate and state variables that can be attributed to plastic yielding at grain to grain contacts. We explore the implications of such temperature dependent behavior for controlling the base of the seismogenic zone in the oceanic lithosphere, and we seek insight into possible mechanistic models for the interactions between fracture and flow that could lead to improved constraints on the strength of the lithosphere.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-05-18
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-03-08
    Description: [1]  New laboratory experiments exploring likely subglacial conditions reveal controls on the transition between stable sliding and stick-slip motion of debris-laden ice over rock, with implications for glacier behavior. Friction between a rock substrate and clasts in ice generates heat, which melts nearby ice to produce lubricating water. An increase in sliding speed or an increase in entrained debris raises heat generation and thus meltwater production. Unstable sliding is favored by low initial lubrication followed by rapid meltwater production in response to a velocity increase. Low initial lubrication can result from cold or drained conditions, whereas rapid increase in meltwater generation results from strong frictional heating caused by high sliding velocity or high debris loads. Strengthening of the interface (healing) during “stick" intervals between slip events occurs primarily through meltwater refreezing. When healing and unstable sliding are taken together, the experiments reported here suggest that stick-slip behavior is common from motion of debris-laden glacier ice over bedrock.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...