ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-03-06
    Description: Water stable isotopologues provide integrated tracers of the atmospheric water cycle, affected by changes in air mass origin, non-convective and convective processes and continental recycling. Novel remote sensing and in situ measuring techniques have recently offered opportunities for monitoring atmospheric water vapour isotopic composition. Recently developed infrared laser spectrometers allow for continuous in situ measurements of surface water vapour δDv and δ18Ov. So far, very few intercomparisons of measurements conducted using different techniques have been achieved at a given location, due to difficulties intrinsic to the comparison of integrated with local measurements. Nudged simulations conducted with high-resolution isotopically enabled general circulation models (GCMs) provide a consistent framework for comparison with the different types of observations. Here, we compare simulations conducted with the ECHAM5-wiso model with two types of water vapour isotopic data obtained during summer 2012 at the forest site of Kourovka, western Siberia: hourly ground-based FTIR total atmospheric columnar δDv amounts, and in situ hourly Picarro δDv measurements. There is an excellent correlation between observed and predicted δDv at surface while the comparison between water column values derived from the model compares well with FTIR estimates.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-12-09
    Description: This paper investigates the scientific value of retrieving H218O and HDO columns in addition to H216O columns from high-resolution ground-based near-infrared spectra. We present a set of refined H216O, H218O, and HDO spectral windows. The retrieved H216O, H218O, and HDO columns are used for an a posteriori calculation of columnar δD and δ18O. We estimate the uncertainties for the so-calculated columnar δD and δ18O values. These estimations include uncertainties due to the measurement noise, errors in the a priori data, and uncertainties in spectroscopic parameters. Time series of δ18O obtained from ground-based FTIR (Fourier transform infrared) spectra are presented for the first time. For our study we use a full physics isotopic general circulation model (ECHAM5-wiso). We show that the full physics simulation of HDO and H218O can already be reasonably predicted from the H216O columns by a simple linear regression model (scatter values between full physics and linear regression simulations are 35 and 4‰ for HDO and H218O, respectively). We document that the columnar δD and δ18O values as calculated a posteriori from the retrievals of H216O, H218O, and HDO show a better agreement with the ECHAM5-wiso simulation than the δD and δ18O values as calculated from the H216O retrievals and the simple linear regression model. This suggests that the H218O and HDO column retrievals add complementary information to the H216O retrievals. However, these data have to be used carefully, because of the different vertical sensitivity of the H216O, H218O, and HDO columnar retrievals. Furthermore, we have to note that the retrievals use reanalysis humidity profiles as a priori input and the results are thus not independent of the reanalysis data.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-11-10
    Description: In the context of rising greenhouse gas concentrations, and the potential feedbacks between climate and the carbon cycle, there is an urgent need to monitor the exchanges of carbon between the atmosphere and both the ocean and the land surfaces. In the so-called top-down approach, the surface fluxes of CO2 are inverted from the observed spatial and temporal concentration gradients. The concentrations of CO2 are measured in-situ at a number of surface stations unevenly distributed over the Earth while several satellite missions may be used to provide a dense and better-distributed set of observations to complement this network. In this paper, we compare the ability of different CO2 concentration observing systems to constrain surface fluxes. The various systems are based on realistic scenarios of sampling and precision for satellite and in-situ measurements. It is shown that satellite measurements based on the differential absorption technique (such as those of SCIAMACHY, GOSAT or OCO) provide more information than the thermal infrared observations (such as those of AIRS or IASI). The OCO observations will provide significantly better information than those of GOSAT. A CO2 monitoring mission based on an active (lidar) technique could potentially provide an even better constraint. This constraint can also be realized with the very dense surface network that could be built with the same funding as that of the active satellite mission. Despite the large uncertainty reductions on the surface fluxes that may be expected from these various observing systems, these reductions are still insufficient to reach the highly demanding requirements for the monitoring of anthropogenic emissions of CO2 or the oceanic fluxes at a spatial scale smaller than that of oceanic basins. The scientific objective of these observing system should therefore focus on the fluxes linked to vegetation and land ecosystem dynamics.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2010-10-22
    Description: This study presents a synthetic model intercomparison to investigate the importance of transport model errors for estimating the sources and sinks of CO2 using satellite measurements. The experiments were designed for testing the potential performance of the proposed CO2 lidar A-SCOPE, but also apply to other space borne missions that monitor total column CO2. The participating transport models IFS, LMDZ, TM3, and TM5 were run in forward and inverse mode using common a priori CO2 fluxes and initial concentrations. Forward simulations of column averaged CO2 (xCO2) mixing ratios vary between the models by σ=0.5 ppm over the continents and σ=0.27 ppm over the oceans. Despite the fact that the models agree on average on the sub-ppm level, these modest differences nevertheless lead to significant discrepancies in the inverted fluxes of 0.1 PgC/yr per 106 km2 over land and 0.03 PgC/yr per 106 km2 over the ocean. These transport model induced flux uncertainties exceed the target requirement that was formulated for the A-SCOPE mission of 0.02 PgC/yr per 106 km2, and could also limit the overall performance of other CO2 missions such as GOSAT. A variable, but overall encouraging agreement is found in comparison with FTS measurements at Park Falls, Darwin, Spitsbergen, and Bremen, although systematic differences are found exceeding the 0.5 ppm level. Because of this, our estimate of the impact of transport model uncerainty is likely to be conservative. It is concluded that to make use of the remote sensing technique for quantifying the sources and sinks of CO2 not only requires highly accurate satellite instruments, but also puts stringent requirements on the performance of atmospheric transport models. Improving the accuracy of these models should receive high priority, which calls for a closer collaboration between experts in atmospheric dynamics and tracer transport.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-09-10
    Description: The Bayesian framework of CO2 flux inversions permits estimates of the retrieved flux uncertainties. Here, the reliability of these theoretical estimates is studied through a comparison against the misfits between the inverted fluxes and independent measurements of the CO2 Net Ecosystem Exchange (NEE) made by the eddy covariance technique at local (few hectares) scale. Regional inversions at 0.5° resolution are applied for the western European domain where ~ 50 eddy covariance sites are operated. These inversions are conducted for the period 2002–2007. They use a mesoscale atmospheric transport model, a prior estimate of the NEE from a terrestrial ecosystem model and rely on the variational assimilation of in situ continuous measurements of CO2 atmospheric mole fractions. Averaged over monthly periods and over the whole domain, the misfits are in good agreement with the theoretical uncertainties for prior and inverted NEE, and pass the chi-square test for the variance at the 30% and 5% significance levels respectively, despite the scale mismatch and the independence between the prior (respectively inverted) NEE and the flux measurements. The theoretical uncertainty reduction for the monthly NEE at the measurement sites is 53% while the inversion decreases the standard deviation of the misfits by 38%. These results build confidence in the NEE estimates at the European/monthly scales and in their theoretical uncertainty from the regional inverse modelling system. However, the uncertainties at the monthly (respectively annual) scale remain larger than the amplitude of the inter-annual variability of monthly (respectively annual) fluxes, so that this study does not engender confidence in the inter-annual variations. The uncertainties at the monthly scale are significantly smaller than the seasonal variations. The seasonal cycle of the inverted fluxes is thus reliable. In particular, the CO2 sink period over the European continent likely ends later than represented by the prior ecosystem model.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-09-06
    Description: Spaceborne reflectance measurements from the POLDER instrument are used to study the specific directional signature close to the backscatter direction. The data analysis makes it possible to derive the extinction-to-backscatter ratio (EBR), which is related to the inverse of the scattering phase function for an angle of 180° and is needed for a quantitative interpretation of lidar observations (active measurements). In addition, the multidirectional measurements are used to quantify the scattering phase function variations close to backscatter, which also provide some indication of the aerosol particle size and shape. The spatial distributions of both parameters show consistent patterns that are consistent with the aerosol type distributions. Pollution aerosols have an EBR close to 70, desert dust values are on the order of 50 and EBR of marine aerosols is close to 25. The scattering phase function shows an increase with the scattering angle close to backscatter. The relative increase ∂lnP/∂γ is close to 0.01 for dust and pollution type aerosols and 0.06 for marine type aerosols. These values are consistent with those retrieved from Mie simulations.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-06-07
    Description: In this study, we provide a comprehensive analysis of aerosol interaction with warm boundary layer clouds, over South-East Atlantic. We use MODIS retrievals to derive statistical relationships between aerosol concentration and cloud properties, together with co-located CALIPSO estimates of cloud and aerosol layer altitudes. The latter are used to differentiate between cases of mixed and interacting cloud-aerosol layers from cases where the aerosol is located well-above the cloud top. This strategy allows, to a certain extent, to isolate real aerosol-induced effect from meteorology. Similar to previous studies, statistics clearly show that aerosol affects cloud microphysics, decreasing the Cloud Droplet Radius (CDR). The same data indicate a concomitant strong decrease in cloud Liquid Water Path (LWP), in evident contrast with the hypothesis of aerosol inhibition of precipitation (Albrecht, 1989). Because of this water loss, probably due to the entrainment of dry air at cloud top, Cloud Optical Thickness (COT) is found to be almost insensitive to changes in aerosol concentration. The analysis of MODIS-CALIPSO coincidences also evidenced an aerosol enhancement of low cloud cover. Surprising, the Cloud Fraction (CLF) response to aerosol invigoration is much stronger when (absorbing) particles are located above cloud top, than in cases of physical interaction, This result suggests a relevant aerosol radiative effect on low cloud occurrence. Heating the atmosphere above the inversion, absorbing particles above cloud top may decrease the vertical temperature gradient, increase the low tropospheric stability and provide favorable conditions for low cloud formation. We also focus on the impact of anthropogenic aerosols on precipitation, through the statistical analysis of CDR-COT co-variations. A COT value of 10 is found to be the threshold beyond which precipitation mostly forms, in both clean and polluted environments. For larger COT, polluted clouds showed evidence of precipitation suppression. Results suggest the presence of two competing mechanisms governing LWP response to aerosol invigoration: a drying effect due to aerosol enhanced entrainment of dry air at cloud top (predominant for optically thin clouds) and a moistening effect due to aerosol inhibition of precipitation (predominant for optically thick clouds).
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
  • 9
    Publication Date: 2011-12-05
    Description: Atmospheric CO2 drives most of the greenhouse effect increase. One major uncertainty on the future rate of increase of CO2 in the atmosphere is the impact of the anticipated climate change on the vegetation. Dynamic Global Vegetation Models (DGVM) are used to address this question. ORCHIDEE is such a DGVM that has proven useful for climate change studies. However, there is no objective and methodological way to accurately assess each new available version on the global scale. In this paper, we submit a methodological evaluation of ORCHIDEE by correlating satellite-derived Vegetation Index time series against those of the modeled Fraction of absorbed Photosynthetically Active Radiation (FPAR). A perfect correlation between the two is not expected, however an improvement of the model should lead to an increase of the overall performance. We detail two case studies in which model improvements are demonstrated, using our methodology. In the first one, a new phenology version in ORCHIDEE is shown to bring a significant impact on the simulated annual cycles, in particular for C3 Grasses and C3 Crops. In the second case study, we compare the simulations when using two different weather fields to drive ORCHIDEE. The ERA-Interim forcing leads to a better description of the FPAR interannual anomalies than the simulation forced by a mixed CRU-NCEP dataset. This work shows that long time series of satellite observations, despite their uncertainties, can identify weaknesses in global vegetation models, a necessary first step to improving them.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-09-25
    Description: Despite an emerging body of literature linking canopy albedo to forest management, understanding of the process is still fragmented. We combined a stand-level forest gap model with a canopy radiation transfer model and satellite-derived model parameters to quantify the effects of forest thinning, that is removing trees at a certain time during the forest rotation, on summertime canopy albedo. The effects of different forest species (pine, beech, oak) and four thinning strategies (light to intense thinning regimes) were examined. During stand establishment, summertime canopy albedo is driven by tree species. In the later stages of stand development, the effect of tree species on summertime canopy albedo decreases in favour of an increasing influence of forest thinning on summertime canopy albedo. These trends continue until the end of the rotation where thinning explains up to 50% of the variance in near-infrared canopy albedo and up to 70% of the variance in visible canopy albedo. More intense thinning lowers the summertime shortwave albedo in the canopy by as much as 0.02 compared to unthinned forest. The structural changes associated with forest thinning can be described by the change in LAI in combination with crown volume. However, forests with identical canopy structure can have different summertime albedo values due to their location: the further north a forest is situated, the more the solar zenith angle increases and thus the higher is the summertime canopy albedo, independent of the wavelength. Despite the increase of absolute summertime canopy albedo values with latitude, the difference in canopy albedo between managed and unmanaged forest decreases with increasing latitude. Forest management thus strongly altered summertime forest albedo.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...