ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Radiocarbon  (2)
  • 2010-2014  (2)
Collection
Keywords
Years
Year
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 23 (2008): PA2209, doi:10.1029/2007PA001527.
    Description: The 14C reservoir age of the surface ocean was determined for two Holocene periods (4908–4955 and 3008–3066 calendar (cal) B.P.) using U/Th-dated corals from Biscayne National Park, Florida, United States. We found that the average reservoir ages for these two time periods (294 ± 33 and 291 ± 27 years, respectively) were lower than the average value between A.D. 1600 and 1900 (390 ± 60 years) from corals. It appears that the surface ocean was closer to isotopic equilibrium with CO2 in the atmosphere during these two time periods than it was during recent times. Seasonal δ 18O measurements from the younger coral are similar to modern values, suggesting that mixing with open ocean waters was indeed occurring during this coral's lifetime. Likely explanations for the lower reservoir age include increased stratification of the surface ocean or increased Δ14C values of subsurface waters that mix into the surface. Our results imply that a more correct reservoir age correction for radiocarbon measurements of marine samples in this location from the time periods ∼3040 and ∼4930 cal years B.P. is ∼292 ± 30 years, less than the canonical value of 404 ± 20 years.
    Description: NSF Chemical Oceanography program provided monetary support under grants OCE-9711326, OCE-0137207, and OCE-0551940 (to ERMD).
    Keywords: Reservoir age ; Radiocarbon ; Corals
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 26 (2011): PA4212, doi:10.1029/2011PA002174.
    Description: Radiocarbon analyses of carbonate materials provide critical information for understanding the last glacial cycle, recent climate history and paleoceanography. Methods that reduce the time and cost of radiocarbon (14C) analysis are highly desirable for large sample sets and reconnaissance type studies. We have developed a method for rapid radiocarbon analysis of carbonates using a novel continuous-flow accelerator mass spectrometry (CFAMS) system. We analyzed a suite of deep-sea coral samples and compared the results with those obtained using a conventional AMS system. Measurement uncertainty is 〈0.02 Fm or 160 Ryr for a modern sample and the mean background was 37,800 Ryr. Radiocarbon values were repeatable and in good agreement with those from the conventional AMS system. Sample handling and preparation is relatively simple and the method offered a significant increase in speed and cost effectiveness. We applied the method to coral samples from the Eastern Pacific Ocean to obtain an age distribution and identify samples for further analysis. This paper is intended to update the paleoceanographic community on the status of this new method and demonstrate its feasibility as a choice for rapid and affordable radiocarbon analysis.
    Description: This work was performed under NSF Cooperative Agreement OCE‐0753487, and also NSF‐OPP awards 0636787 and 0944474.
    Keywords: 14C ; CFAMS ; Carbonate ; Coral ; Paleoceanography ; Radiocarbon
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: text/plain
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...