ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-07-17
    Description: The Paisley Caves in Oregon record the oldest directly dated human remains (DNA) in the Western Hemisphere. More than 100 high-precision radiocarbon dates show that deposits containing artifacts and coprolites ranging in age from 12,450 to 2295 (14)C years ago are well stratified. Western Stemmed projectile points were recovered in deposits dated to 11,070 to 11,340 (14)C years ago, a time contemporaneous with or preceding the Clovis technology. There is no evidence of diagnostic Clovis technology at the site. These two distinct technologies were parallel developments, not the product of a unilinear technological evolution. "Blind testing" analysis of coprolites by an independent laboratory confirms the presence of human DNA in specimens of pre-Clovis age. The colonization of the Americas involved multiple technologically divergent, and possibly genetically divergent, founding groups.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jenkins, Dennis L -- Davis, Loren G -- Stafford, Thomas W Jr -- Campos, Paula F -- Hockett, Bryan -- Jones, George T -- Cummings, Linda Scott -- Yost, Chad -- Connolly, Thomas J -- Yohe, Robert M 2nd -- Gibbons, Summer C -- Raghavan, Maanasa -- Rasmussen, Morten -- Paijmans, Johanna L A -- Hofreiter, Michael -- Kemp, Brian M -- Barta, Jodi Lynn -- Monroe, Cara -- Gilbert, M Thomas P -- Willerslev, Eske -- New York, N.Y. -- Science. 2012 Jul 13;337(6091):223-8. doi: 10.1126/science.1218443.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Museum of Natural and Cultural History, University of Oregon, Eugene, OR 97403, USA. djenkins@uoregon.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22798611" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Archaeology ; *Caves ; DNA/analysis ; Emigration and Immigration/history ; Feces ; *Fossils ; History, Ancient ; Humans ; Molecular Sequence Data ; North America ; Oregon ; Population Dynamics ; Radiometric Dating ; Rodentia ; Technology/history ; Time
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-10-16
    Description: The rhg1-b allele of soybean is widely used for resistance against soybean cyst nematode (SCN), the most economically damaging pathogen of soybeans in the United States. Gene silencing showed that genes in a 31-kilobase segment at rhg1-b, encoding an amino acid transporter, an alpha-SNAP protein, and a WI12 (wound-inducible domain) protein, each contribute to resistance. There is one copy of the 31-kilobase segment per haploid genome in susceptible varieties, but 10 tandem copies are present in an rhg1-b haplotype. Overexpression of the individual genes in roots was ineffective, but overexpression of the genes together conferred enhanced SCN resistance. Hence, SCN resistance mediated by the soybean quantitative trait locus Rhg1 is conferred by copy number variation that increases the expression of a set of dissimilar genes in a repeated multigene segment.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cook, David E -- Lee, Tong Geon -- Guo, Xiaoli -- Melito, Sara -- Wang, Kai -- Bayless, Adam M -- Wang, Jianping -- Hughes, Teresa J -- Willis, David K -- Clemente, Thomas E -- Diers, Brian W -- Jiang, Jiming -- Hudson, Matthew E -- Bent, Andrew F -- New York, N.Y. -- Science. 2012 Nov 30;338(6111):1206-9. doi: 10.1126/science.1228746. Epub 2012 Oct 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant Pathology, University of Wisconsin, Madison, WI 53706, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23065905" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Sequence ; Animals ; *Gene Dosage ; Gene Expression Regulation, Plant ; *Genetic Loci ; Genetic Variation ; Haplotypes ; Male ; Molecular Sequence Data ; Plant Diseases/*genetics/*parasitology ; Plant Proteins/*genetics ; Plant Roots/genetics/parasitology ; Protein Structure, Tertiary/genetics ; Soluble N-Ethylmaleimide-Sensitive Factor Attachment Proteins/genetics ; Soybeans/*genetics/*parasitology ; *Tylenchoidea
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-11-23
    Description: Oxamniquine resistance evolved in the human blood fluke (Schistosoma mansoni) in Brazil in the 1970s. We crossed parental parasites differing ~500-fold in drug response, determined drug sensitivity and marker segregation in clonally derived second-generation progeny, and identified a single quantitative trait locus (logarithm of odds = 31) on chromosome 6. A sulfotransferase was identified as the causative gene by using RNA interference knockdown and biochemical complementation assays, and we subsequently demonstrated independent origins of loss-of-function mutations in field-derived and laboratory-selected resistant parasites. These results demonstrate the utility of linkage mapping in a human helminth parasite, while crystallographic analyses of protein-drug interactions illuminate the mode of drug action and provide a framework for rational design of oxamniquine derivatives that kill both S. mansoni and S. haematobium, the two species responsible for 〉99% of schistosomiasis cases worldwide.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4136436/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4136436/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Valentim, Claudia L L -- Cioli, Donato -- Chevalier, Frederic D -- Cao, Xiaohang -- Taylor, Alexander B -- Holloway, Stephen P -- Pica-Mattoccia, Livia -- Guidi, Alessandra -- Basso, Annalisa -- Tsai, Isheng J -- Berriman, Matthew -- Carvalho-Queiroz, Claudia -- Almeida, Marcio -- Aguilar, Hector -- Frantz, Doug E -- Hart, P John -- LoVerde, Philip T -- Anderson, Timothy J C -- 098051/Wellcome Trust/United Kingdom -- 5R21-AI072704/AI/NIAID NIH HHS/ -- 5R21-AI096277/AI/NIAID NIH HHS/ -- C06 RR013556/RR/NCRR NIH HHS/ -- HHSN272201000005I/PHS HHS/ -- R01 AI097576/AI/NIAID NIH HHS/ -- R01-AI097576/AI/NIAID NIH HHS/ -- R21 AI072704/AI/NIAID NIH HHS/ -- R21 AI096277/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2013 Dec 13;342(6164):1385-9. doi: 10.1126/science.1243106. Epub 2013 Nov 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Biochemistry and Pathology, University of Texas Health Science Center, San Antonio, TX 78229, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24263136" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Drug Resistance/*genetics ; Gene Knockdown Techniques ; Genetic Linkage ; Helminth Proteins/*genetics ; Humans ; Molecular Sequence Data ; Mutation ; Oxamniquine/*pharmacology ; Phylogeny ; Protein Conformation ; Quantitative Trait Loci ; RNA Interference ; Schistosoma mansoni/*drug effects/*genetics ; Schistosomicides/*pharmacology ; Sulfotransferases/chemistry/classification/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-03-01
    Description: The human X and Y chromosomes evolved from an ordinary pair of autosomes during the past 200-300 million years. The human MSY (male-specific region of Y chromosome) retains only three percent of the ancestral autosomes' genes owing to genetic decay. This evolutionary decay was driven by a series of five 'stratification' events. Each event suppressed X-Y crossing over within a chromosome segment or 'stratum', incorporated that segment into the MSY and subjected its genes to the erosive forces that attend the absence of crossing over. The last of these events occurred 30 million years ago, 5 million years before the human and Old World monkey lineages diverged. Although speculation abounds regarding ongoing decay and looming extinction of the human Y chromosome, remarkably little is known about how many MSY genes were lost in the human lineage in the 25 million years that have followed its separation from the Old World monkey lineage. To investigate this question, we sequenced the MSY of the rhesus macaque, an Old World monkey, and compared it to the human MSY. We discovered that during the last 25 million years MSY gene loss in the human lineage was limited to the youngest stratum (stratum 5), which comprises three percent of the human MSY. In the older strata, which collectively comprise the bulk of the human MSY, gene loss evidently ceased more than 25 million years ago. Likewise, the rhesus MSY has not lost any older genes (from strata 1-4) during the past 25 million years, despite its major structural differences to the human MSY. The rhesus MSY is simpler, with few amplified gene families or palindromes that might enable intrachromosomal recombination and repair. We present an empirical reconstruction of human MSY evolution in which each stratum transitioned from rapid, exponential loss of ancestral genes to strict conservation through purifying selection.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3292678/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3292678/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hughes, Jennifer F -- Skaletsky, Helen -- Brown, Laura G -- Pyntikova, Tatyana -- Graves, Tina -- Fulton, Robert S -- Dugan, Shannon -- Ding, Yan -- Buhay, Christian J -- Kremitzki, Colin -- Wang, Qiaoyan -- Shen, Hua -- Holder, Michael -- Villasana, Donna -- Nazareth, Lynne V -- Cree, Andrew -- Courtney, Laura -- Veizer, Joelle -- Kotkiewicz, Holland -- Cho, Ting-Jan -- Koutseva, Natalia -- Rozen, Steve -- Muzny, Donna M -- Warren, Wesley C -- Gibbs, Richard A -- Wilson, Richard K -- Page, David C -- R01 HG000257/HG/NHGRI NIH HHS/ -- R01 HG000257-17/HG/NHGRI NIH HHS/ -- U54 HG003273/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Feb 22;483(7387):82-6. doi: 10.1038/nature10843.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA. jhughes@wi.mit.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22367542" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chromosomes, Human, Y/*genetics ; Conserved Sequence/*genetics ; Crossing Over, Genetic/genetics ; *Evolution, Molecular ; Gene Amplification/genetics ; *Gene Deletion ; Humans ; In Situ Hybridization, Fluorescence ; Macaca mulatta/*genetics ; Male ; Models, Genetic ; Molecular Sequence Data ; Pan troglodytes/genetics ; Radiation Hybrid Mapping ; Selection, Genetic/genetics ; Time Factors ; Y Chromosome/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-03-25
    Description: Multiple myeloma is an incurable malignancy of plasma cells, and its pathogenesis is poorly understood. Here we report the massively parallel sequencing of 38 tumour genomes and their comparison to matched normal DNAs. Several new and unexpected oncogenic mechanisms were suggested by the pattern of somatic mutation across the data set. These include the mutation of genes involved in protein translation (seen in nearly half of the patients), genes involved in histone methylation, and genes involved in blood coagulation. In addition, a broader than anticipated role of NF-kappaB signalling was indicated by mutations in 11 members of the NF-kappaB pathway. Of potential immediate clinical relevance, activating mutations of the kinase BRAF were observed in 4% of patients, suggesting the evaluation of BRAF inhibitors in multiple myeloma clinical trials. These results indicate that cancer genome sequencing of large collections of samples will yield new insights into cancer not anticipated by existing knowledge.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3560292/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3560292/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chapman, Michael A -- Lawrence, Michael S -- Keats, Jonathan J -- Cibulskis, Kristian -- Sougnez, Carrie -- Schinzel, Anna C -- Harview, Christina L -- Brunet, Jean-Philippe -- Ahmann, Gregory J -- Adli, Mazhar -- Anderson, Kenneth C -- Ardlie, Kristin G -- Auclair, Daniel -- Baker, Angela -- Bergsagel, P Leif -- Bernstein, Bradley E -- Drier, Yotam -- Fonseca, Rafael -- Gabriel, Stacey B -- Hofmeister, Craig C -- Jagannath, Sundar -- Jakubowiak, Andrzej J -- Krishnan, Amrita -- Levy, Joan -- Liefeld, Ted -- Lonial, Sagar -- Mahan, Scott -- Mfuko, Bunmi -- Monti, Stefano -- Perkins, Louise M -- Onofrio, Robb -- Pugh, Trevor J -- Rajkumar, S Vincent -- Ramos, Alex H -- Siegel, David S -- Sivachenko, Andrey -- Stewart, A Keith -- Trudel, Suzanne -- Vij, Ravi -- Voet, Douglas -- Winckler, Wendy -- Zimmerman, Todd -- Carpten, John -- Trent, Jeff -- Hahn, William C -- Garraway, Levi A -- Meyerson, Matthew -- Lander, Eric S -- Getz, Gad -- Golub, Todd R -- K12 CA133250/CA/NCI NIH HHS/ -- R01 AG020686/AG/NIA NIH HHS/ -- R01 AG020686-07/AG/NIA NIH HHS/ -- R01 CA133115/CA/NCI NIH HHS/ -- R01 CA133115-04/CA/NCI NIH HHS/ -- R01 CA133966/CA/NCI NIH HHS/ -- R01 CA133966-03/CA/NCI NIH HHS/ -- England -- Nature. 2011 Mar 24;471(7339):467-72. doi: 10.1038/nature09837.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Eli and Edythe L. Broad Institute, 7 Cambridge Center, Cambridge, Massachusetts 02412, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21430775" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Blood Coagulation/genetics ; CpG Islands/genetics ; DNA Mutational Analysis ; DNA Repair/genetics ; Exons/genetics ; Exosome Multienzyme Ribonuclease Complex ; Genome, Human/*genetics ; Genomics ; Histones/metabolism ; Homeodomain Proteins/genetics ; Homeostasis/genetics ; Humans ; Methylation ; Models, Molecular ; Molecular Sequence Data ; Multiple Myeloma/drug therapy/enzymology/*genetics/metabolism ; Mutation/*genetics ; NF-kappa B/metabolism ; Oncogenes/genetics ; Open Reading Frames/genetics ; Protein Biosynthesis/genetics ; Protein Conformation ; Proto-Oncogene Proteins B-raf/antagonists & inhibitors/genetics/metabolism ; RNA Processing, Post-Transcriptional/genetics ; Ribonucleases/chemistry/genetics ; Signal Transduction/genetics ; Transcription, Genetic/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-12-14
    Description: Soybean (Glycine max (L.) Merr.) is an important crop that provides a sustainable source of protein and oil worldwide. Soybean cyst nematode (Heterodera glycines Ichinohe) is a microscopic roundworm that feeds on the roots of soybean and is a major constraint to soybean production. This nematode causes more than US$1 billion in yield losses annually in the United States alone, making it the most economically important pathogen on soybean. Although planting of resistant cultivars forms the core management strategy for this pathogen, nothing is known about the nature of resistance. Moreover, the increase in virulent populations of this parasite on most known resistance sources necessitates the development of novel approaches for control. Here we report the map-based cloning of a gene at the Rhg4 (for resistance to Heterodera glycines 4) locus, a major quantitative trait locus contributing to resistance to this pathogen. Mutation analysis, gene silencing and transgenic complementation confirm that the gene confers resistance. The gene encodes a serine hydroxymethyltransferase, an enzyme that is ubiquitous in nature and structurally conserved across kingdoms. The enzyme is responsible for interconversion of serine and glycine and is essential for cellular one-carbon metabolism. Alleles of Rhg4 conferring resistance or susceptibility differ by two genetic polymorphisms that alter a key regulatory property of the enzyme. Our discovery reveals an unprecedented plant resistance mechanism against a pathogen. The mechanistic knowledge of the resistance gene can be readily exploited to improve nematode resistance of soybean, an increasingly important global crop.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, Shiming -- Kandoth, Pramod K -- Warren, Samantha D -- Yeckel, Greg -- Heinz, Robert -- Alden, John -- Yang, Chunling -- Jamai, Aziz -- El-Mellouki, Tarik -- Juvale, Parijat S -- Hill, John -- Baum, Thomas J -- Cianzio, Silvia -- Whitham, Steven A -- Korkin, Dmitry -- Mitchum, Melissa G -- Meksem, Khalid -- England -- Nature. 2012 Dec 13;492(7428):256-60. doi: 10.1038/nature11651. Epub 2012 Oct 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, Illinois 62901, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23235880" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; DNA Mutational Analysis ; Gene Order ; Gene Silencing ; Genetic Complementation Test ; Glycine Hydroxymethyltransferase/genetics/metabolism ; Haplotypes ; *Host-Parasite Interactions ; Models, Molecular ; Molecular Sequence Data ; Nematoda/*physiology ; Plant Proteins/chemistry/*genetics/*metabolism ; Polymorphism, Genetic/genetics ; Protein Structure, Tertiary ; Quantitative Trait Loci/genetics ; Soybeans/enzymology/*genetics/*parasitology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-01-13
    Description: Early T-cell precursor acute lymphoblastic leukaemia (ETP ALL) is an aggressive malignancy of unknown genetic basis. We performed whole-genome sequencing of 12 ETP ALL cases and assessed the frequency of the identified somatic mutations in 94 T-cell acute lymphoblastic leukaemia cases. ETP ALL was characterized by activating mutations in genes regulating cytokine receptor and RAS signalling (67% of cases; NRAS, KRAS, FLT3, IL7R, JAK3, JAK1, SH2B3 and BRAF), inactivating lesions disrupting haematopoietic development (58%; GATA3, ETV6, RUNX1, IKZF1 and EP300) and histone-modifying genes (48%; EZH2, EED, SUZ12, SETD2 and EP300). We also identified new targets of recurrent mutation including DNM2, ECT2L and RELN. The mutational spectrum is similar to myeloid tumours, and moreover, the global transcriptional profile of ETP ALL was similar to that of normal and myeloid leukaemia haematopoietic stem cells. These findings suggest that addition of myeloid-directed therapies might improve the poor outcome of ETP ALL.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3267575/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3267575/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Jinghui -- Ding, Li -- Holmfeldt, Linda -- Wu, Gang -- Heatley, Sue L -- Payne-Turner, Debbie -- Easton, John -- Chen, Xiang -- Wang, Jianmin -- Rusch, Michael -- Lu, Charles -- Chen, Shann-Ching -- Wei, Lei -- Collins-Underwood, J Racquel -- Ma, Jing -- Roberts, Kathryn G -- Pounds, Stanley B -- Ulyanov, Anatoly -- Becksfort, Jared -- Gupta, Pankaj -- Huether, Robert -- Kriwacki, Richard W -- Parker, Matthew -- McGoldrick, Daniel J -- Zhao, David -- Alford, Daniel -- Espy, Stephen -- Bobba, Kiran Chand -- Song, Guangchun -- Pei, Deqing -- Cheng, Cheng -- Roberts, Stefan -- Barbato, Michael I -- Campana, Dario -- Coustan-Smith, Elaine -- Shurtleff, Sheila A -- Raimondi, Susana C -- Kleppe, Maria -- Cools, Jan -- Shimano, Kristin A -- Hermiston, Michelle L -- Doulatov, Sergei -- Eppert, Kolja -- Laurenti, Elisa -- Notta, Faiyaz -- Dick, John E -- Basso, Giuseppe -- Hunger, Stephen P -- Loh, Mignon L -- Devidas, Meenakshi -- Wood, Brent -- Winter, Stuart -- Dunsmore, Kimberley P -- Fulton, Robert S -- Fulton, Lucinda L -- Hong, Xin -- Harris, Christopher C -- Dooling, David J -- Ochoa, Kerri -- Johnson, Kimberly J -- Obenauer, John C -- Evans, William E -- Pui, Ching-Hon -- Naeve, Clayton W -- Ley, Timothy J -- Mardis, Elaine R -- Wilson, Richard K -- Downing, James R -- Mullighan, Charles G -- CA114766/CA/NCI NIH HHS/ -- CA98413/CA/NCI NIH HHS/ -- CA98543/CA/NCI NIH HHS/ -- P30 CA021765/CA/NCI NIH HHS/ -- P30 CA021765-33/CA/NCI NIH HHS/ -- P30CA021765/CA/NCI NIH HHS/ -- U01GM92666/GM/NIGMS NIH HHS/ -- U54 HG003079/HG/NHGRI NIH HHS/ -- England -- Nature. 2012 Jan 11;481(7380):157-63. doi: 10.1038/nature10725.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Computational Biology and Bioinformatics, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22237106" target="_blank"〉PubMed〈/a〉
    Keywords: Age of Onset ; Child ; DNA Copy Number Variations/genetics ; Genes, ras/genetics ; Genetic Predisposition to Disease/*genetics ; Genome, Human/genetics ; Genomics ; Hematopoiesis/genetics ; Histones/metabolism ; Humans ; Janus Kinases/genetics/metabolism ; Leukemia, Myeloid, Acute/drug therapy/genetics/pathology ; Molecular Sequence Data ; Mutation/*genetics ; Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy/*genetics/pathology ; Receptors, Interleukin-7/genetics ; Sequence Analysis, DNA ; Signal Transduction/genetics ; Stem Cells/metabolism/pathology ; T-Lymphocytes/metabolism/pathology ; Translocation, Genetic/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-04-25
    Description: The human X and Y chromosomes evolved from an ordinary pair of autosomes, but millions of years ago genetic decay ravaged the Y chromosome, and only three per cent of its ancestral genes survived. We reconstructed the evolution of the Y chromosome across eight mammals to identify biases in gene content and the selective pressures that preserved the surviving ancestral genes. Our findings indicate that survival was nonrandom, and in two cases, convergent across placental and marsupial mammals. We conclude that the gene content of the Y chromosome became specialized through selection to maintain the ancestral dosage of homologous X-Y gene pairs that function as broadly expressed regulators of transcription, translation and protein stability. We propose that beyond its roles in testis determination and spermatogenesis, the Y chromosome is essential for male viability, and has unappreciated roles in Turner's syndrome and in phenotypic differences between the sexes in health and disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4139287/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4139287/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bellott, Daniel W -- Hughes, Jennifer F -- Skaletsky, Helen -- Brown, Laura G -- Pyntikova, Tatyana -- Cho, Ting-Jan -- Koutseva, Natalia -- Zaghlul, Sara -- Graves, Tina -- Rock, Susie -- Kremitzki, Colin -- Fulton, Robert S -- Dugan, Shannon -- Ding, Yan -- Morton, Donna -- Khan, Ziad -- Lewis, Lora -- Buhay, Christian -- Wang, Qiaoyan -- Watt, Jennifer -- Holder, Michael -- Lee, Sandy -- Nazareth, Lynne -- Alfoldi, Jessica -- Rozen, Steve -- Muzny, Donna M -- Warren, Wesley C -- Gibbs, Richard A -- Wilson, Richard K -- Page, David C -- P51 RR013986/RR/NCRR NIH HHS/ -- U54 HG003079/HG/NHGRI NIH HHS/ -- U54 HG003273/HG/NHGRI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Apr 24;508(7497):494-9. doi: 10.1038/nature13206.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute, Howard Hughes Medical Institute, & Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA. ; The Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63108, USA. ; Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24759411" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chromosomes, Human, X/genetics ; Chromosomes, Human, Y/genetics ; Disease ; *Evolution, Molecular ; Female ; Gene Dosage/*genetics ; Gene Expression Regulation ; Health ; Humans ; Male ; Mammals/*genetics ; Marsupialia/genetics ; Molecular Sequence Annotation ; Molecular Sequence Data ; Protein Biosynthesis/genetics ; Protein Stability ; Selection, Genetic/genetics ; Sequence Homology ; Sex Characteristics ; Spermatogenesis/genetics ; Testis/metabolism ; Transcription, Genetic/genetics ; Turner Syndrome/genetics ; X Chromosome/genetics ; Y Chromosome/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-05-31
    Description: The four-chambered mammalian heart develops from two fields of cardiac progenitor cells distinguished by their spatiotemporal patterns of differentiation and contributions to the definitive heart. The first heart field differentiates earlier in lateral plate mesoderm, generates the linear heart tube and ultimately gives rise to the left ventricle. The second heart field (SHF) differentiates later in pharyngeal mesoderm, elongates the heart tube, and gives rise to the outflow tract and much of the right ventricle. Because hearts in lower vertebrates contain a rudimentary outflow tract but not a right ventricle, the existence and function of SHF-like cells in these species has remained a topic of speculation. Here we provide direct evidence from Cre/Lox-mediated lineage tracing and loss-of-function studies in zebrafish, a lower vertebrate with a single ventricle, that latent TGF-beta binding protein 3 (ltbp3) transcripts mark a field of cardiac progenitor cells with defining characteristics of the anterior SHF in mammals. Specifically, ltbp3(+) cells differentiate in pharyngeal mesoderm after formation of the heart tube, elongate the heart tube at the outflow pole, and give rise to three cardiovascular lineages in the outflow tract and myocardium in the distal ventricle. In addition to expressing Ltbp3, a protein that regulates the bioavailability of TGF-beta ligands, zebrafish SHF cells co-express nkx2.5, an evolutionarily conserved marker of cardiac progenitor cells in both fields. Embryos devoid of ltbp3 lack the same cardiac structures derived from ltbp3(+) cells due to compromised progenitor proliferation. Furthermore, small-molecule inhibition of TGF-beta signalling phenocopies the ltbp3-morphant phenotype whereas expression of a constitutively active TGF-beta type I receptor rescues it. Taken together, our findings uncover a requirement for ltbp3-TGF-beta signalling during zebrafish SHF development, a process that serves to enlarge the single ventricular chamber in this species.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3319150/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3319150/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhou, Yong -- Cashman, Timothy J -- Nevis, Kathleen R -- Obregon, Pablo -- Carney, Sara A -- Liu, Yan -- Gu, Aihua -- Mosimann, Christian -- Sondalle, Samuel -- Peterson, Richard E -- Heideman, Warren -- Burns, Caroline E -- Burns, C Geoffrey -- 5R01HL096816/HL/NHLBI NIH HHS/ -- R01 ES012716/ES/NIEHS NIH HHS/ -- R01 HL096816/HL/NHLBI NIH HHS/ -- R01 HL096816-03/HL/NHLBI NIH HHS/ -- T32 GM007205/GM/NIGMS NIH HHS/ -- England -- Nature. 2011 May 29;474(7353):645-8. doi: 10.1038/nature10094.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21623370" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cardiovascular Abnormalities/embryology ; Cell Lineage ; Gene Knockdown Techniques ; Heart/*embryology ; Latent TGF-beta Binding Proteins/*metabolism ; Molecular Sequence Data ; Myocardium/cytology/*metabolism ; Phenotype ; Signal Transduction ; Transcription Factors/metabolism ; Zebrafish/*embryology/genetics ; Zebrafish Proteins/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-10-14
    Description: The naked mole rat (Heterocephalus glaber) is a strictly subterranean, extraordinarily long-lived eusocial mammal. Although it is the size of a mouse, its maximum lifespan exceeds 30 years, making this animal the longest-living rodent. Naked mole rats show negligible senescence, no age-related increase in mortality, and high fecundity until death. In addition to delayed ageing, they are resistant to both spontaneous cancer and experimentally induced tumorigenesis. Naked mole rats pose a challenge to the theories that link ageing, cancer and redox homeostasis. Although characterized by significant oxidative stress, the naked mole rat proteome does not show age-related susceptibility to oxidative damage or increased ubiquitination. Naked mole rats naturally reside in large colonies with a single breeding female, the 'queen', who suppresses the sexual maturity of her subordinates. They also live in full darkness, at low oxygen and high carbon dioxide concentrations, and are unable to sustain thermogenesis nor feel certain types of pain. Here we report the sequencing and analysis of the naked mole rat genome, which reveals unique genome features and molecular adaptations consistent with cancer resistance, poikilothermy, hairlessness and insensitivity to low oxygen, and altered visual function, circadian rythms and taste sensing. This information provides insights into the naked mole rat's exceptional longevity and ability to live in hostile conditions, in the dark and at low oxygen. The extreme traits of the naked mole rat, together with the reported genome and transcriptome information, offer opportunities for understanding ageing and advancing other areas of biological and biomedical research.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3319411/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3319411/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Eun Bae -- Fang, Xiaodong -- Fushan, Alexey A -- Huang, Zhiyong -- Lobanov, Alexei V -- Han, Lijuan -- Marino, Stefano M -- Sun, Xiaoqing -- Turanov, Anton A -- Yang, Pengcheng -- Yim, Sun Hee -- Zhao, Xiang -- Kasaikina, Marina V -- Stoletzki, Nina -- Peng, Chunfang -- Polak, Paz -- Xiong, Zhiqiang -- Kiezun, Adam -- Zhu, Yabing -- Chen, Yuanxin -- Kryukov, Gregory V -- Zhang, Qiang -- Peshkin, Leonid -- Yang, Lan -- Bronson, Roderick T -- Buffenstein, Rochelle -- Wang, Bo -- Han, Changlei -- Li, Qiye -- Chen, Li -- Zhao, Wei -- Sunyaev, Shamil R -- Park, Thomas J -- Zhang, Guojie -- Wang, Jun -- Gladyshev, Vadim N -- AG021518/AG/NIA NIH HHS/ -- AG038004/AG/NIA NIH HHS/ -- CA080946/CA/NCI NIH HHS/ -- R01 AG021518/AG/NIA NIH HHS/ -- R01 AG021518-10/AG/NIA NIH HHS/ -- R01 AG038004/AG/NIA NIH HHS/ -- R01 AG038004-02/AG/NIA NIH HHS/ -- R01 CA080946/CA/NCI NIH HHS/ -- R01 CA080946-11/CA/NCI NIH HHS/ -- England -- Nature. 2011 Oct 12;479(7372):223-7. doi: 10.1038/nature10533.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Bioinspired Science, Ewha Womans University, Seoul, 120-750, Korea.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21993625" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptation, Physiological/*genetics ; Aging/genetics ; Amino Acid Sequence ; Animals ; Body Temperature Regulation/genetics ; Carbon Dioxide/analysis/metabolism ; Circadian Rhythm/genetics ; Darkness ; Genes/genetics ; Genome/*genetics ; Genomic Instability/genetics ; Genomics ; Humans ; Ion Channels/genetics ; Longevity/*genetics/physiology ; Male ; Mitochondrial Proteins/genetics ; Mole Rats/*genetics/*physiology ; Molecular Sequence Data ; Mutagenesis/genetics ; Oxygen/analysis/metabolism ; Taste/genetics ; Transcriptome/genetics ; Visual Perception/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...