ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-09-08
    Description: Eukaryotic cells make many types of primary and processed RNAs that are found either in specific subcellular compartments or throughout the cells. A complete catalogue of these RNAs is not yet available and their characteristic subcellular localizations are also poorly understood. Because RNA represents the direct output of the genetic information encoded by genomes and a significant proportion of a cell's regulatory capabilities are focused on its synthesis, processing, transport, modification and translation, the generation of such a catalogue is crucial for understanding genome function. Here we report evidence that three-quarters of the human genome is capable of being transcribed, as well as observations about the range and levels of expression, localization, processing fates, regulatory regions and modifications of almost all currently annotated and thousands of previously unannotated RNAs. These observations, taken together, prompt a redefinition of the concept of a gene.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3684276/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3684276/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Djebali, Sarah -- Davis, Carrie A -- Merkel, Angelika -- Dobin, Alex -- Lassmann, Timo -- Mortazavi, Ali -- Tanzer, Andrea -- Lagarde, Julien -- Lin, Wei -- Schlesinger, Felix -- Xue, Chenghai -- Marinov, Georgi K -- Khatun, Jainab -- Williams, Brian A -- Zaleski, Chris -- Rozowsky, Joel -- Roder, Maik -- Kokocinski, Felix -- Abdelhamid, Rehab F -- Alioto, Tyler -- Antoshechkin, Igor -- Baer, Michael T -- Bar, Nadav S -- Batut, Philippe -- Bell, Kimberly -- Bell, Ian -- Chakrabortty, Sudipto -- Chen, Xian -- Chrast, Jacqueline -- Curado, Joao -- Derrien, Thomas -- Drenkow, Jorg -- Dumais, Erica -- Dumais, Jacqueline -- Duttagupta, Radha -- Falconnet, Emilie -- Fastuca, Meagan -- Fejes-Toth, Kata -- Ferreira, Pedro -- Foissac, Sylvain -- Fullwood, Melissa J -- Gao, Hui -- Gonzalez, David -- Gordon, Assaf -- Gunawardena, Harsha -- Howald, Cedric -- Jha, Sonali -- Johnson, Rory -- Kapranov, Philipp -- King, Brandon -- Kingswood, Colin -- Luo, Oscar J -- Park, Eddie -- Persaud, Kimberly -- Preall, Jonathan B -- Ribeca, Paolo -- Risk, Brian -- Robyr, Daniel -- Sammeth, Michael -- Schaffer, Lorian -- See, Lei-Hoon -- Shahab, Atif -- Skancke, Jorgen -- Suzuki, Ana Maria -- Takahashi, Hazuki -- Tilgner, Hagen -- Trout, Diane -- Walters, Nathalie -- Wang, Huaien -- Wrobel, John -- Yu, Yanbao -- Ruan, Xiaoan -- Hayashizaki, Yoshihide -- Harrow, Jennifer -- Gerstein, Mark -- Hubbard, Tim -- Reymond, Alexandre -- Antonarakis, Stylianos E -- Hannon, Gregory -- Giddings, Morgan C -- Ruan, Yijun -- Wold, Barbara -- Carninci, Piero -- Guigo, Roderic -- Gingeras, Thomas R -- 062023/Wellcome Trust/United Kingdom -- 1RC2HG005591/HG/NHGRI NIH HHS/ -- 249968/European Research Council/International -- P30 CA045508/CA/NCI NIH HHS/ -- R01 HG003700/HG/NHGRI NIH HHS/ -- R01HG003700/HG/NHGRI NIH HHS/ -- R37 GM062534/GM/NIGMS NIH HHS/ -- RC2 HG005591/HG/NHGRI NIH HHS/ -- U01 HG003147/HG/NHGRI NIH HHS/ -- U54 HG004555/HG/NHGRI NIH HHS/ -- U54 HG004557/HG/NHGRI NIH HHS/ -- U54 HG004558/HG/NHGRI NIH HHS/ -- U54 HG004576/HG/NHGRI NIH HHS/ -- U54 HG007004/HG/NHGRI NIH HHS/ -- U54HG004555/HG/NHGRI NIH HHS/ -- U54HG004557/HG/NHGRI NIH HHS/ -- U54HG004558/HG/NHGRI NIH HHS/ -- U54HG004576/HG/NHGRI NIH HHS/ -- England -- Nature. 2012 Sep 6;489(7414):101-8. doi: 10.1038/nature11233.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre for Genomic Regulation and UPF, Doctor Aiguader 88, Barcelona 08003, Catalonia, Spain.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22955620" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Cell Line ; DNA/*genetics ; DNA, Intergenic/genetics ; *Encyclopedias as Topic ; Enhancer Elements, Genetic ; Exons/genetics ; Gene Expression Profiling ; Genes/genetics ; Genome, Human/*genetics ; Genomics ; Humans ; *Molecular Sequence Annotation ; Polyadenylation/genetics ; Protein Isoforms/genetics ; RNA/biosynthesis/genetics ; RNA Editing/genetics ; RNA Splicing/genetics ; Regulatory Sequences, Nucleic Acid/*genetics ; Repetitive Sequences, Nucleic Acid/genetics ; Sequence Analysis, RNA ; Transcription, Genetic/*genetics ; Transcriptome/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-05-04
    Description: Various ‘omics’ technologies, including microarrays and gas chromatography mass spectrometry, can be used to identify hundreds of interesting genes, proteins and metabolites, such as differential genes, proteins and metabolites associated with diseases. Identifying metabolic pathways has become an invaluable aid to understanding the genes and metabolites associated with studying conditions. However, the classical methods used to identify pathways fail to accurately consider joint power of interesting gene/metabolite and the key regions impacted by them within metabolic pathways. In this study, we propose a powerful analytical method referred to as Subpathway-GM for the identification of metabolic subpathways. This provides a more accurate level of pathway analysis by integrating information from genes and metabolites, and their positions and cascade regions within the given pathway. We analyzed two colorectal cancer and one metastatic prostate cancer data sets and demonstrated that Subpathway-GM was able to identify disease-relevant subpathways whose corresponding entire pathways might be ignored using classical entire pathway identification methods. Further analysis indicated that the power of a joint genes/metabolites and subpathway strategy based on their topologies may play a key role in reliably recalling disease-relevant subpathways and finding novel subpathways.
    Keywords: Genomics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...