ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring  (13)
  • JGR
  • 2010-2014  (13)
Sammlung
Erscheinungszeitraum
Jahr
  • 1
    Publikationsdatum: 2021-06-09
    Beschreibung: The 11–13 January 2011 eruptive episode at Etna volcano occurred after several months of increasing ash emissions from the summit craters, and was heralded by increasing SO2 output, which peaked at ∼5000 megagrams/day several hours before the start of the eruptive activity. The eruptive episode began with a phase of Strombolian activity from a pit crater on the eastern flank of the SE‐Crater. Explosions became more intense with time and eventually became transitional between Strombolian and fountaining, before moving into a lava fountaining phase. Fountaining was accompanied by lava output from the lower rim of the pit crater. Emplacement of the resulting lava flow field, as well as associated lava fountain‐ and Strombolian‐phases, was tracked using a remote sensing network comprising both thermal and visible cameras. Thermal surveys completed once the eruptive episode had ended also allowed us to reconstruct the emplacement of the lava flow field. Using a high temporal resolution geostationary satellite data we were also able to construct a detailed record of the heat flux during the fountain‐fed flow phase and its subsequent cooling. The dense rock volume of erupted lava obtained from the satellite data was 1.2 × 106 m3; this was emplaced over a period of about 6 h to give a mean output rate of ∼55 m3 s−1. By comparison, geologic data allowed us to estimate dense rock volumes of ∼0.85 × 106 m3 for the pyroclastics erupted during the lava fountain phase, and 0.84–1.7 × 106 m3 for lavas erupted during the effusive phase, resulting in a total erupted dense rock volume of 1.7–2.5 × 106 m3 and a mean output rate of 78–117 m3 s−1. The sequence of events and quantitative results presented here shed light on the shallow feeding system of the volcano.
    Beschreibung: Published
    Beschreibung: B11207
    Beschreibung: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Beschreibung: JCR Journal
    Beschreibung: partially_open
    Schlagwort(e): Etna ; lava fountains ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2012-02-03
    Beschreibung: Application of light detection and ranging (LIDAR) technology in volcanology has 7 developed rapidly over the past few years, being extremely useful for the generation 8 of high‐spatial‐resolution digital elevation models and for mapping eruption products. 9 However, LIDAR can also be used to yield detailed information about the dynamics of 10 lava movement, emplacement processes occuring across an active lava flow field, and the 11 volumes involved. Here we present the results of a multitemporal airborne LIDAR survey 12 flown to acquire data for an active flow field separated by time intervals ranging from 13 15 min to 25 h. Overflights were carried out over 2 d during the 2006 eruption of Mt. Etna, 14 Italy, coincident with lava emission from three ephemeral vent zones to feed lava flow in 15 six channels. In total 53 LIDAR images were collected, allowing us to track the volumetric 16 evolution of the entire flow field with temporal resolutions as low as ∼15 min and at a 17 spatial resolution of 〈1 m. This, together with accurate correction for systematic errors, 18 finely tuned DEM‐to‐DEM coregistration and an accurate residual error assessment, 19 permitted the quantification of the volumetric changes occuring across the flow field. We 20 record a characteristic flow emplacement mode, whereby flow front advance and channel 21 construction is fed by a series of volume pulses from the master vent. Volume pulses 22 have a characteristic morphology represented by a wave that moves down the channel 23 modifying existing channel‐levee constructs across the proximal‐medial zone and building 24 new ones in the distal zone. Our high‐resolution multitemporal LIDAR‐derived DEMs 25 allow calculation of the time‐averaged discharge rates associated with such a pulsed flow 26 emplacement regime, with errors under 1% for daily averaged values.
    Beschreibung: This work was partially funded by the Italian 930 Dipartimento della Protezione Civile in the frame of the 2007–2009 Agree- 931 ment with Istituto Nazionale di Geofisica e Vulcanologia–INGV. A.F. 932 benefited from the MIUR‐FIRB project “Piattaforma di ricerca multi‐disci- 933 plinare su terremoti e vulcani (AIRPLANE)” n. RBPR05B2ZJ. S.T. 934 benefited from the project FIRB “Sviluppo di nuove tecnologie per la prote- 935 zione e difesa del territorio dai rischi naturali (FUMO)” funded by the Italian 936 Ministero dell’Istruzione, dell’Università e della Ricerca.
    Beschreibung: Published
    Beschreibung: B11203
    Beschreibung: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Beschreibung: 1.10. TTC - Telerilevamento
    Beschreibung: 3.6. Fisica del vulcanismo
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): LIDAR ; lava flow ; Etna ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2017-04-04
    Beschreibung: Assessment of the hazard from lava flow inundation at the active volcano of Mount Etna, Italy, was performed by calculating the probability of lava flow inundation at each position on the volcano. A probability distribution for the formation of new vents was calculated using geological and volcanological data from past eruptions. The simulated lava flows from these vents were emplaced using a maximum expected flow length derived from geological data on previous lava flows. Simulations were run using DOWNFLOW, a digital-elevation-model-based model designed to predict lava flow paths. Different eruptive scenarios were simulated by varying the elevation and probability distribution of eruptive points. Inundation maps show that the city of Catania and the coastal zone may only be impacted by flows erupted from low-altitude vents (〈1500 m elevation) and that flank eruptions at elevations 〉2000 m preferentially inundate the northeast and southern sectors of the volcano as well as the Valle del Bove. Eruptions occurring in the summit area (〉3000 m elevation) pose no threat to the local population. Discrepancies between the results of simple, hydrological models and those of the DOWNFLOW model show that hydrological approaches are inappropriate when dealing with Etnean lava flows. Because hydrological approaches are not designed to reproduce the full complexity of lava flow spreading, they underestimate the catchment basins when the fluid has a complex rheology.
    Beschreibung: Published
    Beschreibung: F01019
    Beschreibung: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Beschreibung: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Beschreibung: 4.3. TTC - Scenari di pericolosità vulcanica
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): volcanic hazard ; lava flow ; Mount Etna ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2017-04-04
    Beschreibung: Destruction of human property by lava flow invasion is a significant volcanic hazard at Mount Etna (Italy), where reliable risk maps are important for risk mitigation. We present new high-resolution quantitative risk maps of Mount Etna that are based on lava flow simulations starting from more than 70,000 different potential vents, a probability distribution of vent location, an empirical relationship for the maximum length of lava flows, and a database of buildings. In addition to standard risk maps, which classify areas according to the expected damage at each point, we classify each point of the volcano with respect to the damage that would occur if a vent opened at that point. The resulting maps should help local authorities in making the necessary decisions to deal with ongoing eruptions and to plan long-term land use.
    Beschreibung: Published
    Beschreibung: 1111-1114
    Beschreibung: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Beschreibung: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Beschreibung: 4.3. TTC - Scenari di pericolosità vulcanica
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): Lava flows ; Volcanic risk ; Mount Etna ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.08. Risk::05.08.99. General or miscellaneous
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2012-02-03
    Beschreibung: Influences of distant earthquakes on volcanic systems by dynamic stress transfer are well documented. We analyzed seismic signals and volcanic activity at Mount Etna during two periods, January 2006 and May 2008, that clearly showed variations coincident with distant earthquakes. In the first period, characterized by mild volcano activity, the effect of the dynamic stress transfer, caused by an earthquake in Greece (M = 6.8), was twofold: (1) banded tremor activity changed its features and almost disappeared; (2) a swarm of volcano‐tectonic (VT) earthquakes took place. The changes of the banded tremor were likely due to variations in rock permeability, caused by fluid flows driven by dynamic strain. The VT earthquake swarm probably developed as a secondary process, promoted by the dynamically triggered activation of magmatic fluids. The second period, May 2008, showed an intense explosive activity. During this interval, the dynamic stress transfer, associated with the arrival of the seismic waves of the Sichuan earthquake (M = 7.9), affected the character of the seismo‐volcanic signals and on the following day triggered an eruption. In particular, we observed changes in volcanic tremor and increases of both occurrence rate and energy of long period events. In this case, we suggest that dynamic stress transfer caused nucleation of new bubbles in volatile‐rich magma bodies with consequent buildup of pressure, highlighted by the increase of long period activity, followed by the occurrence of an eruption. We conclude that stresses from distant earthquakes are capable of modifying the state of the volcano.
    Beschreibung: Published
    Beschreibung: B12304
    Beschreibung: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): Mt. Etna volcano ; dynamic stress transfer ; triggered eruption ; triggered seismicity ; volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2017-04-04
    Beschreibung: Geophysical (tilt, seismic tremor and gravity signals), geochemical (crater SO2 flux) and infrared satellite measurements are presented and discussed to track the temporal evolution of the lava fountain episode occurring at Mt Etna volcano on 10 April 2011. The multi-disciplinary approach provides insight into a gas-rich magma source trapped in a shallow storage zone inside the volcano edifice. This generated the fast ascending gas-magma dispersed flow feeding the lava fountain and causing the depressurization of a deeper magma storage. Satellite thermal data allowed estimation of the amount of erupted lava, which, summed to the tephra volume, yielded a total volume of erupted products of about 1 106 m3. Thanks to the daylight occurrence of this eruptive episode, the SO2 emission rate was also estimated, showing a degassing cycle reaching a peak of 15,000 Mg d 1 with a mean daily value of 5,700 Mg d 1. The SO2 data from the previous fountain episode on 17–18 February to 10 April 2011, yielded a cumulative degassed magma volume of about 10.5 106 m3, indicating a ratio of roughly 10:1 between degassed and erupted volumes. This volumetric balance, differently from those previously estimated during different styles of volcanic activities with long-term (years) recharging periods and middle-term (weeks to months) effusive eruptions, points toward the predominant role played by the gas phase in generating and driving this lava fountain episode.
    Beschreibung: Published
    Beschreibung: L24307
    Beschreibung: 3.6. Fisica del vulcanismo
    Beschreibung: JCR Journal
    Beschreibung: restricted
    Schlagwort(e): Mt. Etna ; lava fountain ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2017-04-04
    Beschreibung: Many volcanic eruptions are shortly preceded by injection of new magma into a pre-existing, shallow (〈10 km) magma chamber, causing convection and mixing between the incoming and resident magmas. These processes may trigger dyke propagation and further magma rise, inducing long-term (days to months) volcano deformation, seismic swarms, gravity anomalies, and changes in the composition of volcanic plumes and fumaroles, eventually culminating in an eruption. Although new magma injection into shallow magma chambers can lead to hazardous event, such injection is still not systematically detected and recognized. Here, we present the results of numerical simulations of magma convection and mixing in geometrically complex magmatic systems, and describe the multiparametric dynamics associated with buoyant magma injection. Our results reveal unexpected pressure trends and pressure oscillations in the Ultra-Long-Period (ULP) range of minutes, related to the generation of discrete plumes of rising magma. Very long pressure oscillation wavelengths translate into comparably ULP ground displacements with amplitudes of order 10−4–10−2 m. Thus, new magma injection into magma chambers beneath volcanoes can be revealed by ULP ground displacement measured at the surface.
    Beschreibung: Published
    Beschreibung: 873-880
    Beschreibung: 3.6. Fisica del vulcanismo
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): Magma dynamics ; Magma convection ; Magma mixing ; ULP ground displacement ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.04. Thermodynamics ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2017-04-04
    Beschreibung: The 15 March 2007 Vulcanian paroxysm at Stromboli volcano was recorded by several instruments that allowed description of the eruptive sequence and unravelling the processes in the upper feeding system. Among the devices installed on the island, two borehole strainmeters recorded unique signals not fully explored before. Here we present an analysis of these signals together with the time-lapse images from a monitoring system comprising both infrared and visual cameras. The two strainmeter signals display an initial phase of pressure growth in the feeding system lasting ~2 min. This is followed by 25 s of low-amplitude oscillations of the two signals, that we interpret as a strong step-like overpressure building up in the uppermost conduit by the gas-rich magma accumulating below a thick pile of rock produced by crater rim collapses. This overpressure caused shaking of the ground, and triggered a number of small landslides of the inner crater rim recorded by the monitoring cameras. When the plug obstructing the crater was removed by the initial Vulcanian blast, the two strainmeter signals showed opposite sign, compatible with a depressurizing source at ~1.5 km depth, at the junction between the intermediate and shallow feeding system inferred by previous studies. The sudden depressurization accompanying the Vulcanian blast caused an oscillation of the source composed by three cycles of about 20 sec each with a decreasing amplitude, as well recorded by the strainmeters. The visible effect of this behaviour was the initial Vulcanian blast and a 2-3 km high eruptive column followed by two lava fountainings displaying decreasing intensity and height. To our knowledge, this is the first time that such a behaviour was observed on an open conduit volcano.
    Beschreibung: Published
    Beschreibung: 249-256
    Beschreibung: 3.6. Fisica del vulcanismo
    Beschreibung: JCR Journal
    Beschreibung: restricted
    Schlagwort(e): Stromboli volcano ; paroxysmal explosions ; shallow plumbing system ; borehole strainmeters ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2017-04-04
    Beschreibung: Between 2007 and early 2008, the Istituto Nazionale di Geofisica e Vulcanologia (INGV) monitoring networks on Etna volcano recorded a recharging phase that climaxed with a new effusive eruption on 13 May 2008 and lasted about 14 months. A dike‐forming intrusion was accompanied by a violent seismic swarm, with more than 230 events recorded in the first 6 h, the largest being ML = 3.9. In the meanwhile, marked ground deformation was recorded by the permanent tilt and GPS networks, and sudden changes in the summit area were detected by five continuously recording magnetic stations. Poor weather conditions did not allow direct observation of the eruptive events, but important information was provided by infrared satellite images that detected the start of lava fountains from the eruptive fissure, feeding a lava flow. This flow spread within the Valle del Bove depression, covering 6.4 km on the southeastern flank of the volcano in a few hours. The seismicity and deformation pattern indicated that the dike‐forming intrusion was propagating northward. It produced a dry fracture field, which generated concern for the possibility that the eruptive fissures could expand downslope toward populated areas. Monitoring and modeling of the multidisciplinary data, together with the simulations of ash dispersal and lava flows, allowed us both to infer the eruptive mechanisms and to provide correct interpretation of the ongoing phenomena, furnishing useful information for civil defense purposes. We describe how this approach of feedback between monitoring and research provides critical support to risk evaluation.
    Beschreibung: We wish to thank all our colleagues from INGV Sezione di Catania for data collection, for the maintenance of the monitoring networks during the whole eruption, and for the many discussions about the interpretation of the eruptive events; the Etna Guides, the Funivia dell’Etna, and especially Alfio Mazzaglia and Nino Mazzaglia for the prompt information pertaining any news about the summit eruptive activity at Mount Etna; the Italian Civil Defense (DPC) for the close and efficient collaboration built up during the last height years of activity at Etna and other Sicilian volcanoes. We obtained MODIS data from NASA and SEVIRI data from EUMETSAT. We are indebted to Paul Davis for his B03203 BONACCORSO ET AL.: ETNA MULTIDISCIPLINARY HAZARD ASSESSMENT B03203 17 of 19 positive and encouraging comments. We thank the Associate Editor Michael P. Ryan, who helped greatly in improving the form of the manuscript. This study was undertaken with partial financial support from the INGV‐DPC 2007–2009 Agreement. Scientific papers funded by DPC do not represent its official opinion and politics. We thank Stephen Conway for revising the English language of this manuscript.
    Beschreibung: Published
    Beschreibung: B03203
    Beschreibung: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): Etna ; effusive eruption ; hazard evaluation ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2017-04-04
    Beschreibung: Significant changes in the local magnetic field marked the resumption of eruptive activity at Stromboli volcano on February 27, 2007. After differential magnetic fields were obtained by filtering out external noise using adaptive filters and seasonal thermal noise using temperature data, we identified step-like changes of 1–4 nT coincident with the opening of eruptive fissures in the upper part of the Sciara del Fuoco. The magnetic variations detected at two stations are closely related to the propagation of a shallow NE–SW magmatic intrusion extending beyond the summit craters area. These observations are consistent with those calculated using piezomagnetic models in which stress-induced changes in rock magnetization are produced by the magmatic intrusion. No significant magnetic changes were observed when the first fractures opened along the NE crater rim. Indeed, the stressinduced magnetization caused by this magmatic activity is expected to be too low because of the structural weakness and/or thermal state of the summit area. The continuous long-term decay characterizing the post-eruptive magnetic pattern can be related to a time-dependent relaxation process. A Maxwell rheology was assumed and the temporal evolution of the piezomagnetic field was evaluated. This allowed us to estimate the rheological properties of the medium; in particular, an average viscosity ranging between 1016 and 1017 Pa⋅s was a relaxation time τ of about 38 days.
    Beschreibung: Published
    Beschreibung: 1311–1322
    Beschreibung: 1.6. Osservazioni di geomagnetismo
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): Stromboli Island ; Magnetic monitoring ; Piezomagnetic field ; Stress field ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...