ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-06-06
    Description: [1]  Atmospheric circulation in a Snowball Earth is critical for determining cloud behavior, heat export from the tropics, regions of bare ice, and sea glacier flow. These processes strongly affect Snowball Earth deglaciation and the ability of oases to support photosynthetic marine life throughout a Snowball Earth. Here we establish robust aspects of the Snowball Earth atmospheric circulation by running six general circulation models with consistent Snowball Earth boundary conditions. The models produce qualitatively similar patterns of atmospheric circulation and precipitation minus evaporation. The strength of the Snowball Hadley circulation is roughly double modern at low CO 2 and greatly increases as CO 2 is increased. We force a 1D axisymmetric sea glacier model with GCM output and show that, neglecting zonal asymmetry, sea glaciers would limit ice thickness variations to O (10%). Global mean ice thickness in the 1D sea glacier model is well-approximated by a 0D ice thickness model with global mean surface temperature as the upper boundary condition. We then show that a thin-ice Snowball solution is possible in the axysymmetric sea glacier model when forced by output from all the GCMs if we use ice optical properties that favor the thin-ice solution. Finally, we examine Snowball oases for life using analytical models forced by the GCM output and find that conditions become more favorable for oases as the Snowball warms, so that the most critical time for the survival of life would be near the beginning of a Snowball Earth episode.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-10-25
    Description: Neoproterozoic, and possibly Paleoproterozoic, glaciations represent the most extreme climate events in post-Hadean Earth, and may link closely with the evolution of the atmosphere and life. According to the Snowball Earth hypothesis, the entire ocean was covered with ice during these events for a few million years, during which time volcanic CO2 increased enough to cause deglaciation. Geochemical proxy data and model calculations suggest that the maximum CO2 was 0.01–0.1 by volume, but early climate modeling suggested that deglaciation was not possible at CO2 = 0.2. We use results from six different general circulation models (GCMs) to show that clouds could warm a Snowball enough to reduce the CO2 required for deglaciation by a factor of 10–100. Although more work is required to rigorously validate cloud schemes in Snowball-like conditions, our results suggest that Snowball deglaciation is consistent with observations.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...