ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-10-12
    Print ISSN: 1559-2723
    Electronic ISSN: 1559-2731
    Topics: Geography
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Springer
    In:  Estuaries and Coasts, 35 (2). pp. 658-664.
    Publication Date: 2014-01-27
    Description: The thiol peptide phytochelatins (PC2; the polymer with n = 2) are efficient metal-chelating compounds produced by phytoplankton and higher plants. Both PC2 and their precursor glutathione (GSH) are related to detoxification mechanisms. GSH and PC2 were quantified using liquid chromatography with fluorescent detection and observed in the particulate phase along a salinity gradient of the Tamar Estuary (SW UK), a heavily metal impacted site, at concentrations up to 274 and 16.5 μmol (g chl a) -1, respectively. The peptides predominated within low (0-5) and mid-salinities (5-20). Down-estuary, at sites farther from metal sources and salinities higher than 20, PC2 showed a sharp decrease or were not detected. High PC2/GSH ratios indicated areas with augmented concentrations of bioavailable metals at the tidal limit, near Cu mines and the mid-estuary where resuspension of sediments occurs. By following typical partitioning patterns previously reported for dissolved Cu and Zn, the production of thiol peptides, notably PC2, reflected a rapid interaction between the particulate and dissolved phases. © 2011 Coastal and Estuarine Research Federation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-07-04
    Description: Observations of the tropical atmosphere are fundamental to the understanding of global changes in air quality, atmospheric oxidation capacity and climate, yet the tropics are under-populated with long-term measurements. The first three years (October 2006–September 2009) of meteorological, trace gas and particulate data from the global WMO/Global Atmospheric Watch (GAW) Cape Verde Atmospheric Observatory Humberto Duarte Fonseca (CVAO; 16° 51′ N, 24° 52′ W) are presented, along with a characterisation of the origin and pathways of air masses arriving at the station using the NAME dispersion model and simulations of dust deposition using the COSMO-MUSCAT dust model. The observations show a strong influence from Saharan dust in winter with a maximum in super-micron aerosol and particulate iron and aluminium. The dust model results match the magnitude and daily variations of dust events, but in the region of the CVAO underestimate the measured aerosol optical thickness (AOT) because of contributions from other aerosol. The NAME model also captured the dust events, giving confidence in its ability to correctly identify air mass origins and pathways in this region. Dissolution experiments on collected dust samples showed a strong correlation between soluble Fe and Al and measured solubilities were lower at high atmospheric dust concentrations. Fine mode aerosol at the CVAO contains a significant fraction of non-sea salt components including dicarboxylic acids, methanesulfonic acid and aliphatic amines, all believed to be of oceanic origin. A marine influence is also apparent in the year-round presence of iodine and bromine monoxide (IO and BrO), with IO suggested to be confined mainly to the surface few hundred metres but BrO well mixed in the boundary layer. Enhanced CO2 and CH4 and depleted oxygen concentrations are markers for air-sea exchange over the nearby northwest African coastal upwelling area. Long-range transport results in generally higher levels of O3 and anthropogenic non-methane hydrocarbons (NMHC) in air originating from North America. Ozone/CO ratios were highest (up to 0.42) in relatively fresh European air masses. In air heavily influenced by Saharan dust the O3/CO ratio was as low as 0.13, possibly indicating O3 uptake to dust. Nitrogen oxides (NOx and NOy) show generally higher concentrations in winter when air mass origins are predominantly from Africa. High photochemical activity at the site is shown by maximum spring/summer concentrations of OH and HO2 of 9 × 106 molecule cm−3 and 6 × 108 molecule cm−3, respectively. After the primary photolysis source, the most important controls on the HOx budget in this region are IO and BrO chemistry, the abundance of HCHO, and uptake of HOx to aerosol.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...