ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/vnd.openxmlformats-officedocument.spreadsheetml.sheet
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Bartoli, Gretta; Hönisch, Bärbel; Zeebe, Richard E (2011): Atmospheric CO2 decline during the Pliocene intensification of Northern Hemisphere glaciations. Paleoceanography, 26(4), PA4213, https://doi.org/10.1029/2010PA002055
    Publication Date: 2024-04-13
    Description: everal hypotheses have been put forward to explain the onset of intensive glaciations on Greenland, Scandinavia, and North America during the Pliocene epoch between 3.6 and 2.7 million years ago (Ma). A decrease in atmospheric CO2 may have played a role during the onset of glaciations, but other tectonic and oceanic events occurring at the same time may have played a part as well. Here we present detailed atmospheric CO2 estimates from boron isotopes in planktic foraminifer shells spanning 4.6-2.0 Ma. Maximal Pliocene atmospheric CO2 estimates gradually declined from values around 410 µatm to early Pleistocene values of 300 matm at 2.0 Ma. After the onset of large-scale ice sheets in the Northern Hemisphere, maximal pCO2 estimates were still at 2.5 Ma +90 µatm higher than values characteristic of the early Pleistocene interglacials. By contrast, Pliocene minimal atmospheric CO2 gradually decreased from 310 to 245 µatm at 3.2 Ma, coinciding with the start of transient glaciations on Greenland. Values characteristic of early Pleistocene glacial atmospheric CO2 of 200 matm were abruptly reached after 2.7 Ma during the late Pliocene transition. This trend is consistent with the suggestion that ocean stratification and iron fertilization increased after 2.7 Ma in the North Pacific and Southern Ocean and may have led to increased glacial CO2 storage in the oceanic abyss after 2.7 Ma onward.
    Keywords: 165-999A; AGE; Caribbean Sea; DEPTH, sediment/rock; DRILL; Drilling/drill rig; DSDP/ODP/IODP sample designation; Globigerinoides sacculifer, weight; Globigerinoides sacculifer, δ11B; Globigerinoides sacculifer, δ11B, standard error; Isotopic event; Joides Resolution; Leg165; Method comment; Ocean Drilling Program; ODP; Sample code/label; Size fraction
    Type: Dataset
    Format: text/tab-separated-values, 659 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...