ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-05-15
    Description: The influence of individual clay minerals on formation damage of reservoir sandstones is reviewed, mainly through the mechanism of fine particle dispersion and migration leading to the accumulation and blockage of pore throats and significant reduction of permeability. The minerals discussed belong to the smectite, kaolinite, illite and chlorite groups respectively. These minerals usually occur in an aggregate form in reservoir sandstones and the physicochemical properties of these aggregates are reviewed in order to reach a better understanding of the factors that lead to their dispersion in aqueous pore fluids. Particularly significant properties include the surface charge on both basal and edge faces of the clay minerals and how this varies with pH, external surface area of both swelling and non-swelling clays, porosity and pore size distribution in the micro- and meso-pore size range and overall aggregate morphology. For non-swelling clays, and perhaps even for swelling clays, dispersion is thought to be initiated at the micro- or meso-pore level, where the interaction between the pore solution and the charged clay surfaces exposed on adjacent sides of slit- or wedge-shaped pores brings about expansion of the diffuse double electric layer (DDL) and an increase in hydration pressure. Such expansion occurs only in dilute electrolyte solutions in contrast to the effect of concentrated solutions which would shrink the thickness of the DDL and so inhibit dispersion. Stable dispersions are formed, particularly where the solution pH exceeds the isoelectric pH of the mineral, which is often at alkali pH values, so that both basal face and edge surfaces are negatively charged and the particles repel each other. The osmotic swelling of smectitic clays to a gel-like form, so effectively blocking pores in situ , is often invoked as an explanation of formation damage in reservoir sandstones. Such swelling certainly occurs in dilute aqueous solutions under earth surface conditions but it is uncertain that stable smectitic gels could form at the temperatures and pressures associated with deeply buried reservoir sandstones.
    Print ISSN: 0009-8558
    Electronic ISSN: 1471-8030
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Mineralogical Society of Great Britain and Ireland
    Publication Date: 2014-05-15
    Description: The instability of shales in drilled formations leads to serious operational problems with major economic consequences for petroleum exploration and production. It is generally agreed that the nature of the clay minerals in shale formations is a primary causative factor leading to their instability, although the exact mechanism involved is more debateable. Currently, the principal cause of shale instability is considered to be volume expansion following the osmotic swelling of Na-smectite. However, illitic and kaolinitic shales may also be unstable, so that interlayer expansion cannot therefore be considered as a universal causative mechanism of shale instability. This review considers alternative scenarios of shale instability where the major clay minerals are smectite, illite, mixed-layer illite-smectite (I/S) and kaolinite respectively. The influence of interacting factors that relate to shale clay mineralogy such as texture, structure and fabric are discussed, as are the pore size distribution and the nature of water in clays and shales and how these change with increasing depth of burial. It is found from the literature that the thickness of the diffuse double layer (DDL) of the aqueous solutions associated with the charged external surfaces of clay minerals is probably of the same order or even thicker than the sizes of a significant proportion of the pores found in shales. In these circumstances, overlap of the DDLs associated with exposed outer surfaces of clay minerals on opposing sides of micropores (〈2 nm in diameter) and mesopores (2–50 nm in diameter) in a lithostatically compressed shale would bring about electrostatic repulsion and lead to increased pore/hydration pressure in smectitic, illitic and even kaolinitic shales. This pressure would be inhibited by the use of more concentrated K-based fluids which effectively shrink the thickness of the DDL towards the clay mineral surfaces in the pore walls. The use of soluble polymers would also encapsulate these clay mineral surfaces and so inhibit their hydration. In this scenario, the locus of action with respect to shale instability and its inhibition is moved from the interlamellar space of the smectitic clays to the charged external surfaces of the various clay minerals bounding the walls of the shale pores.
    Print ISSN: 0009-8558
    Electronic ISSN: 1471-8030
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-04-01
    Description: The influence of individual clay minerals on formation damage of reservoir sandstones is reviewed, mainly through the mechanism of fine particle dispersion and migration leading to the accumulation and blockage of pore throats and significant reduction of permeability. The minerals discussed belong to the smectite, kaolinite, illite and chlorite groups respectively. These minerals usually occur in an aggregate form in reservoir sandstones and the physicochemical properties of these aggregates are reviewed in order to reach a better understanding of the factors that lead to their dispersion in aqueous pore fluids. Particularly significant properties include the surface charge on both basal and edge faces of the clay minerals and how this varies with pH, external surface area of both swelling and non-swelling clays, porosity and pore size distribution in the micro- and meso-pore size range and overall aggregate morphology. For non-swelling clays, and perhaps even for swelling clays, dispersion is thought to be initiated at the micro- or meso-pore level, where the interaction between the pore solution and the charged clay surfaces exposed on adjacent sides of slit- or wedge-shaped pores brings about expansion of the diffuse double electric layer (DDL) and an increase in hydration pressure. Such expansion occurs only in dilute electrolyte solutions in contrast to the effect of concentrated solutions which would shrink the thickness of the DDL and so inhibit dispersion. Stable dispersions are formed, particularly where the solution pH exceeds the isoelectric pH of the mineral, which is often at alkali pH values, so that both basal face and edge surfaces are negatively charged and the particles repel each other. The osmotic swelling of smectitic clays to a gel-like form, so effectively blocking pores in situ, is often invoked as an explanation of formation damage in reservoir sandstones. Such swelling certainly occurs in dilute aqueous solutions under earth surface conditions but it is uncertain that stable smectitic gels could form at the temperatures and pressures associated with deeply buried reservoir sandstones.
    Print ISSN: 0009-8558
    Electronic ISSN: 1471-8030
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-04-01
    Description: The instability of shales in drilled formations leads to serious operational problems with major economic consequences for petroleum exploration and production. It is generally agreed that the nature of the clay minerals in shale formations is a primary causative factor leading to their instability, although the exact mechanism involved is more debateable. Currently, the principal cause of shale instability is considered to be volume expansion following the osmotic swelling of Nasmectite. However, illitic and kaolinitic shales may also be unstable, so that interlayer expansion cannot therefore be considered as a universal causative mechanism of shale instability. This review considers alternative scenarios of shale instability where the major clay minerals are smectite, illite, mixed-layer illite-smectite (I/S) and kaolinite respectively. The influence of interacting factors that relate to shale clay mineralogy such as texture, structure and fabric are discussed, as are the pore size distribution and the nature of water in clays and shales and how these change with increasing depth of burial. It is found from the literature that the thickness of the diffuse double layer (DDL) of the aqueous solutions associated with the charged external surfaces of clay minerals is probably of the same order or even thicker than the sizes of a significant proportion of the pores found in shales. In these circumstances, overlap of the DDLs associated with exposed outer surfaces of clay minerals on opposing sides of micropores (
    Print ISSN: 0009-8558
    Electronic ISSN: 1471-8030
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...