ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cambridge University Press  (4)
  • 2010-2014  (4)
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2013-10-15
    Description: We performed large-eddy simulations of the flow over a series of three-dimensional (3D) dunes at laboratory scale. The bedform three-dimensionality was imposed by shifting a standard two-dimensional (2D) dune shape in the streamwise direction according to a sine wave. The turbulence statistics were discussed in Part 1 of this article (Omidyeganeh & Piomelli, J. Fluid Mech., vol. 721, 2013, pp. 454-483). Coherent flow structures and their statistics are discussed concentrating on two cases with the same crestline amplitudes and wavelengths but different crestline alignments: in-phase and staggered. The present paper shows that the induced large-scale mean streamwise vortices are the primary factor that alters the features of the instantaneous flow structures. Wall turbulence is insensitive to the crestline alignment; alternating high- and low-speed streaks appear in the internal boundary layer developing on the stoss side, whereas over the node plane (the plane normal to the spanwise direction at the node of the crestline), they are inclined towards the lobe plane (the plane normal to the spanwise direction at the most downstream point of the crestline) due to the mean spanwise pressure gradient. Spanwise vortices (rollers) generated by Kelvin-Helmholtz instability in the separated shear layer appear regularly over the lobe with much larger length scale than those over the saddle (the plane normal to the spanwise direction at the most upstream point of the crestline). Rollers over the lobe may extend to the saddle plane and affect the reattachment features; their shedding is more frequent than in 2D geometries. Vortices shed from the separated shear layer in the lobe plane undergo a three-dimensional instability while being advected downstream, and rise toward the free surface. They develop into a horseshoe shape (similar to the 2D case) and affect the whole channel depth, whereas those generated near the saddle are advected downstream and toward the bed. When the tip of such a horseshoe reaches the free surface, the ejection of flow at the surface causes 'boils' (upwelling events on the surface). Strong boil events are observed on the surface of the lobe planes of 3D dunes more frequently than in the saddle planes. They also appear more frequently than in the corresponding 2D geometry. The crestline alignment of the dune alters the dynamics of the flow structures, in that they appear in the lobe plane and are advected towards the saddle plane of the next dune, where they are dissipated. Boil events occur at a higher frequency in the staggered alignment, but with less intensity than in the in-phase alignment. © 2013 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-06-05
    Description: We performed numerical simulations of dissolved oxygen (DO) transfer from a turbulent flow, driven by periodic boundary-layer turbulence in the intermittent regime, to underlying DO-absorbing organic sediment layers. A uniform initial distribution of oxygen is left to decay (with no re-aeration) as the turbulent transport supplies the sediment with oxygen from the outer layers to be absorbed. A very thin diffusive sublayer at the sediment-water interface (SWI), caused by the high Schmidt number of DO in water, limits the overall decay rate. A decomposition of the instantaneous decaying turbulent scalar field is proposed, which results in the development of similarity solutions that collapse the data in time. The decomposition is then tested against the governing equations, leading to a rigorous procedure for the extraction of an ergodic turbulent scalar field. The latter is composed of a statistically periodic and a steady non-decaying field. Temporal averaging is used in lieu of ensemble averaging to evaluate flow statistics, allowing the investigation of turbulent mixing dynamics from a single flow realization. In spite of the highly unsteady state of turbulence, the monotonically decaying component is surprisingly consistent with experimental and numerical correlations valid for steady high-Schmidt-number turbulent mass transfer. Linearly superimposed onto it is the statistically periodic component, which incorporates all the features of the non-equilibrium state of turbulence. It is modulated by the evolution of the turbulent coherent structures driven by the oscillating boundary layer in the intermittent regime, which are responsible for the violent turbulent production mechanisms. These cause, in turn, a rapid increase of the turbulent mass flux at the edge of the diffusive sublayer. This outer-layer forcing mechanism drives a periodic accumulation of high scalar concentration levels in the near-wall region. The resulting modulated scalar flux across the SWI is delayed by a quarter of a cycle with respect to the wall-shear stress, consistently with the non-equilibrium state of the turbulent mixing. © 2013 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-03-13
    Description: We performed large-eddy simulations of flow over a series of three-dimensional dunes at laboratory scale (Reynolds number based on the average channel depth and streamwise velocity was 18 900) using the Lagrangian dynamic eddy-viscosity subgrid-scale model. The bedform three-dimensionality was imposed by shifting a standard two-dimensional dune shape in the streamwise direction according to a sine wave. The statistics of the flow are discussed in 10 cases with in-phase and staggered crestlines, different deformation amplitudes and wavelengths. The results are validated qualitatively against experiments. The three-dimensional separation of flow at the crestline alters the distribution of wall pressure, which in turn may cause secondary flow across the stream, which directs low-momentum fluid, near the bed, toward the lobe (the most downstream point on the crestline) and high-momentum fluid, near the top surface, toward the saddle (the most upstream point on the crestline). The mean flow is characterized by a pair of counter-rotating streamwise vortices, with core radius of the order of the flow depth. However, for wavelengths smaller than the flow depth, the secondary flow exists only near the bed and the mean flow away from the bed resembles the two-dimensional case. Staggering the crestlines alters the secondary motion; the fastest flow occurs between the lobe and the saddle planes, and two pairs of streamwise vortices appear (a strong one, centred about the lobe, and a weaker one, coming from the previous dune, centred around the saddle). The distribution of the wall stress and the focal points of separation and attachment on the bed are discussed. The sensitivity of the average reattachment length, depends on the induced secondary flow, the streamwise and spanwise components of the channel resistance (the skin friction and the form drag), and the contribution of the form drag to the total resistance are also studied. Three-dimensionality of the bed increases the drag in the channel; the form drag contributes more than in the two-dimensional case to the resistance, except for the staggered-crest case. Turbulent-kinetic energy is increased in the separated shear layer by the introduction of three-dimensionality, but its value normalized by the plane-averaged wall stress is lower than in the corresponding two-dimensional dunes. The upward flow on the stoss side and higher deceleration of flow on the lee side over the lobe plane lift and broaden the separated shear layer, respectively, affecting the turbulent kinetic energy. © 2013 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-11-03
    Description: The physics of the roughness sublayer are studied by direct numerical simulations (DNS) of an open-channel flow with sandgrain roughness. A double-averaging (DA) approach is used to separate the spatial variations of the time-averaged quantities and the turbulent fluctuations. The spatial inhomogeneity of velocity and Reynolds stresses results in an additional production term for the turbulent kinetic energy (TKE) - the 'wake production'; it is the excess wake kinetic energy (WKE), generated from the work of mean flow against the form drag, that is not directly dissipated into heat, but instead converted into turbulence. The wake production promotes wall-normal turbulent fluctuations and increases the pressure work, which ultimately leads to more homogeneous turbulence in the roughness sublayer, and to the increase of Reynolds shear stress and the drag on the rough wall. In the fully rough regime, roughness directly affects the generation of the wall-normal fluctuations, while in the transitionally rough regime, the region affected by roughness is separated from the region of intense generation of these fluctuations. The budget of the WKE and the connection between the wake and the turbulence suggest strong interactions between the roughness sublayer and the outer layer that are insensitive to the variation of the outer-layer conditions. Furthermore, the present results may have implications for the relationship between the roughness geometry and the flow dynamics in the region directly affected by roughness. © 2014 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...