ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-10-24
    Description: SUMMARYTo evaluate the effects of a modern cultivation system of plastic film mulching with drip irrigation (MD) on soil greenhouse gas fluxes, methane (CH4) and nitrous oxide (N2O) fluxes were quantified and contrasted in an MD system and a traditional system of mulch-free flood-irrigated (MFF) cotton (Gossypium hirsutum L.) in fields of northwest China. The results showed that soil N2O flux and the absorption rate of CH4 were lower in the MD than the MFF sites. A possible reason for the higher CH4 emissions at MD sites was that the relatively low gaseous oxygen (O2) availability and high ammonium (NH4+) content in the MD soil increased CH4 generation by methanogens and decreased CH4 oxidation by methanotrophs. The lower N2O in the MD sites may be due to an increase of soil denitrification by Thiobacillus denitrificans that reduced some nitrous compounds further into nitrogen gas (N2). Taking into account the global warming potentials of CH4 and N2O in a 100-year time horizon, during the entire growth period, the contribution of CH4 to the greenhouse effect was significantly lower than N2O in these two treatments. Considering these two greenhouse gas fluxes together, a transition from non-mulching cultivation to mulching cultivation could reduce atmospheric emissions by c. 20 g CO2 e m2/season. Based on these findings and previous studies, it can be concluded that mulched-drip irrigation cultivation is a good way to decrease the emission of greenhouse gases and reduce the global warming impact of arid farmlands.
    Print ISSN: 0021-8596
    Electronic ISSN: 1469-5146
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-11-10
    Description: SUMMARYSoybean is an important oil- and protein-producing crop and over the last few decades soybean genetic transformation has made rapid strides. The probability of occurrence of transgene flow should be assessed, although the discrimination of conventional and transgenic soybean seeds and their hybrid descendants is difficult in fields. The feasibility of non-destructive discrimination of conventional and glyphosate-resistant soybean seeds and their hybrid descendants was examined by a multispectral imaging system combined with chemometric methods. Principal component analysis (PCA), partial least squares discriminant analysis (PLSDA), least squares-support vector machines (LS-SVM) and back propagation neural network (BPNN) methods were applied to classify soybean seeds. The current results demonstrated that clear differences among conventional and glyphosate-resistant soybean seeds and their hybrid descendants could be easily visualized and an excellent classification (98% with BPNN model) could be achieved. It was concluded that multispectral imaging together with chemometric methods would be a promising technique to identify transgenic soybean seeds with high efficiency.
    Print ISSN: 0021-8596
    Electronic ISSN: 1469-5146
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...