ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cambridge University Press  (47)
  • American Geophysical Union (AGU)
  • 2010-2014  (40)
  • 1955-1959  (7)
  • 1
    facet.materialart.
    Unknown
    Cambridge University Press
    In:  EPIC3Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge, United Kingdom and New York, NY, USA, Cambridge University Press, pp. 1-32, ISBN: 9781107641655
    Publication Date: 2015-03-08
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Cambridge University Press
    In:  EPIC3Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge, United Kingdom and New York, NY, USA, Cambridge University Press, pp. 35-94, ISBN: 9781107641655
    Publication Date: 2015-03-08
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-12-04
    Description: Analysis of bioconvection in dilute suspensions of bottom-heavy but randomly swimming micro-organisms is commonly based on a model introduced in 1990. This couples the Navier–Stokes equations, the cell conservation equation and the Fokker–Planck equation (FPE) for the probability density function for a cell’s swimming direction ${p}$, which balances rotational diffusion against viscous and gravitational torques. The results have shown qualitative agreement with observation, but the model has not been subjected to direct quantitative testing in a controlled experiment. Here, we consider a simple configuration in which the suspension is contained in a circular cylinder of radius $R$, which rotates at angular velocity ${ mOmega}$ about a horizontal axis. We solve the FPE and calculate the cells’ mean swimming velocity, which proves to be horizontal when $B{mOmega}gg 1$, where $B$ is the gyrotactic reorientation time scale. Then we compute the cell concentration distribution, which is non-uniform only in a thin boundary layer near the cylinder wall when ${it eta}^{2}={mOmega}R^{2}/Dgg 1$, where $D$ is the cells’ translational diffusivity. The fact that cells are denser than water means that this concentration distribution drives a perturbation to the underlying solid-body rotational flow which can be calculated analytically. The predictions of the theory are evaluated in terms of a proposed experimental realisation of the configuration, using suspensions of the alga Chlamydomonas nivalis or Chlamydomonas reinhardtii or the algal colony Volvox.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-02-16
    Description: We study the linear stability of two-dimensional high-Reynolds-number flow in a rigid parallel-sided channel, of which part of one wall has been replaced by a flexible membrane under longitudinal tension T*. Far upstream the flow is parallel Poiseuille flow at Reynolds number Re; the width of the channel is a and the length of the membrane is λ a, where 1 Re1/7≲ λ Re. Steady flow was studied using interactive boundary-layer theory by Guneratne & Pedley (J. Fluid Mech., vol. 569, 2006, pp. 151-184) for various values of the pressure difference Pe across the membrane at its upstream end. Here unsteady interactive boundary-layer theory is used to investigate the stability of the trivial steady solution for Pe = 0. An unexpected finding is that the flow is always unstable, with a growth rate that increases with T*. In other words, the stability problem is ill-posed. However, when the pressure difference is held fixed (= 0) at the downstream end of the membrane, or a little further downstream, the problem is well-posed and all solutions are stable. The physical mechanisms underlying these findings are explored using a simple inviscid model; the crucial factor in the fluid dynamics is the vorticity gradient across the incoming Poiseuille flow. © 2011 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-02-19
    Description: This paper examines the dynamic coupling between a sloshing fluid and the motion of the vessel containing the fluid. A mechanism is identified that leads to an energy exchange between the vessel dynamics and fluid motion. It is based on a 1:1 resonance in the linearized equations, but nonlinearity is essential for the energy transfer. For definiteness, the theory is developed for Cooker's pendulous sloshing experiment. The vessel has a rectangular cross-section, is partially filled with a fluid and is suspended by two cables. A nonlinear normal form is derived close to an internal 1:1 resonance, with the energy transfer manifested by a heteroclinic connection, which connects the purely symmetric sloshing modes to the purely antisymmetric sloshing modes. Parameter values where this pure energy transfer occurs are identified. In practice, this energy transfer can lead to sloshing-induced destabilization of fluid-carrying vessels. © Cambridge University Press 2013.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-05-22
    Description: Hydrodynamic focusing of cells along the region of the most rapid flow is a robust feature in downflowing suspensions of swimming gyrotactic microorganisms. Experiments performed in a downward pipe flow have reported that the focused beam-like structure of the cells is often unstable and results in the formation of regular-spaced axisymmetric blips, but the mechanism by which they are formed is not well understood. To elucidate this mechanism, in this study, we perform a linear stability analysis of a downflowing suspension of randomly swimming gyrotactic cells in a two-dimensional vertical channel. On increasing the flow rate, the basic state exhibits a focused beam-like structure. It is found that this focused beam is unstable with the varicose mode, the spatial structure, wavelength, phase speed and behaviour with the flow rate of which are remarkably similar to those of the blip instability in the pipe flow experiment. To understand the physical mechanism of the varicose mode, we perform an analysis which calculates the term-by-term contribution to the instability. It is shown that the leading physical mechanism in generating the varicose instability originates from the horizontal gradient in the cell-swimming-vector field formed by the non-uniform shear in the base flow. This mechanism is found to be supplemented by cooperation with the gyrotactic instability mechanism observed in uniform suspensions. © © 2014 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-12-13
    Description: The role of uniform shear in bioconvective instability in a shallow suspension of swimming gyrotactic cells is studied using linear stability analysis. The shear is introduced by applying a plane Couette flow, and it significantly disturbs gravitaxis of the cell. The unstably stratified basic state of the cell concentration is gradually relieved as the shear rate is increased, and it even becomes stably stratified at very large shear rates. Stability of the basic state is significantly changed. The instability at high wavenumbers is drastically damped out with the shear rate, while that at low wavenumbers is destabilized. However, at very large shear rates, the latter is also suppressed. The most unstable mode is found as a pair of streamwise uniform rolls aligned with the shear, analogous to Rayleigh-Bénard convection in plane Couette flow. To understand these findings, the physical mechanism of the bioconvective instability is reexamined with several sets of numerical experiments. It is shown that the bioconvective instability in a shallow suspension originates from three different physical processes: gravitational overturning, gyrotaxis of the cell and negative cross-diffusion flux. The first mechanism is found to rule the behaviour of low-wavenumber instability whereas the last two mechanisms are mainly associated with high-wavenumber instability. With the increase of the shear rate, the former is enhanced, thereby leading to destabilization at low wavenumbers, whereas the latter two mechanisms are significantly suppressed. For streamwise varying perturbations, shear with sufficiently large rates is also found to play a stabilizing role as in Rayleigh-Bénard convection. However, at small shear rates, it destabilizes these perturbations through the mechanism of overstability discussed by Hill, Pedley and Kessler (J. Fluid Mech., vol. 208, 1989, pp. 509-543). Finally, the present findings are compared with a recent experiment by Croze, Ashraf and Bees (Phys. Biol., vol. 7, 2010, 046001) and they are in qualitative agreement. © 2013 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-03-07
    Description: We propose a method to model manoeuvres in self-propelled flexible-bodied fish by modelling the hydrodynamics coupled to the body inertia. Flexible body motion is prescribed and the equations of motion are solved for the position of the centre of mass and rotation of the body. The governing equations are formulated by applying the conservation of linear and angular momentum. Two independent methods to model the fluid dynamics are pursued: Model 1 is an extension of elongated-body theory, modified for self-propulsion and flexible motion. Model 2 applies a numerical boundary-element formulation with the fish modelled as an infinitely thin rectangular body. The manoeuvring response to an impulsive input is first examined to understand the rigid-body characteristics of the fish. A flexible bend action is included to model C-bends of the type observed during escapes in fish. Models 1 and 2 are used to cross-verify the respective implementations as well as to develop physical insights into manoeuvring. A parameter study shows that fish of intermediate body depths are best adapted to rapid turns whereas the initial dynamic state of the fish is instrumental in affecting the sign as well as the magnitude of the turn angle, for a prescribed bend deflection. Computations for combined swimming and turning show that the initial rigid-body dynamics of the fish is much more effective than the induced effect of the prior shed wake in enhancing the turning response. © 2012 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-01-02
    Description: We study high-Reynolds-number flow in a two-dimensional collapsible channel in the asymptotic limit of wall deformations confined to the viscous boundary layer. The system is modelled using interactive boundary-layer equations for a Newtonian incompressible fluid coupled to the freely moving elastic wall under constant tension and external pressure. The deformation of the membrane is assumed to have small amplitude and long wavelength, whereas the flow comprises the inviscid core and the viscous boundary layers on both walls coupled to each other and to the membrane deformation. Firstly, by linking the interactive boundary-layer model to the small-amplitude, long-wavelength inviscid analysis, we conclude that the model is valid only when the pressure perturbations are fixed downstream from the wall indentation, contrary to the common assumption of classical boundary-layer theory. Next we explore possible steady states of the system, showing that a unique steady solution exists when the pressure is fixed precisely at the downstream end of the membrane, but there are multiple states possible if the pressure is specified further downstream. We examine the stability of these states by solving the generalized eigenvalue problem for perturbations to the nonlinear steady solutions and also by performing time integration of the full boundary-layer equations. Surprisingly, we find that no self-excited oscillations develop in the collapsible channel systems with finite-amplitude deformations. Instead, for each point in the parameter space, with the exception of points subject to numerical instabilities associated with the boundary-layer equations, exactly one of the steady states is predicted to be stable. We discuss these findings in relation to the results reported previously in the literature. © 2013 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-11-04
    Description: We consider two-dimensional one-sided convection of a solute in a fluid-saturated porous medium, where the solute decays via a first-order reaction. Fully nonlinear convection is investigated using high-resolution numerical simulations and a low-order model that couples the dynamic boundary layer immediately beneath the distributed solute source to the slender vertical plumes that form beneath. A transient-growth analysis of the boundary layer is used to characterise its excitability. Three asymptotic regimes are investigated in the limit of high Rayleigh number Ra, in which the domain is considered deep, shallow or of intermediate depth, and for which the Damköhler number Da is respectively large, small or of order unity. Scaling properties of the flow are identified numerically and rationalised via the analytic model. For fully established high-Ra convection, analysis and simulation suggest that the time-averaged solute transfer rate scales with Ra and the plume horizontal wavenumber with Ra1/2, with coefficients modulated by Da in each case. For large Da, the rapid reaction rate limits the plume depth and the boundary layer restricts the rate of solute transfer to the bulk, whereas for small Da the average solute transfer rate is ultimately limited by the domain depth and the convection is correspondingly weaker. © 2014 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...