ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Monograph available for loan
    Monograph available for loan
    Cambridge [u.a.] : Cambridge University Press
    Call number: AWI A13-92-0466 ; PIK N 456-93-0113
    Description / Table of Contents: Contents: Preface. - Acknowledgements. - The authors. - Acronyms. - Notation. - Physical constants. - PART 1: INTRODUCTION. - 1 Introduction to climate modeling. - 2 Human components of the climate system. - PART 2: THE SCIENCE: SUBSYSTEMS AND PROCESSES. - 3 The atmosphere. - 4 The ocean circulation. - 5 Land surface. - 6 Terrestrial ecosystems. - 7 Atmospheric chemistry. - 8 Marine biogeochemistry. - PART 3: MODELING AND PARAMETERIZATION. - 9 Climate system simulation: basic numerical & computational concepts. - 10 Atmospheric general circulation modeling. - 11 Ocean general circulation modeling. - 12 Sea ice models. - 13 Land ice and climate. - 14 Biophysical models of land surface processes. - 15 Chemistry-transport models. - 16 Biogeochemical ocean models. - PART 4: COUPLINGS AND INTERACTIONS. - 17 Global coupled models: atmosphere, ocean, sea ice. - 18 Tropical pacific ENSO models: ENSO as a mode of the coupled system. - PART 5: SENSITIVITY EXPERIMENTS AND APPLICATIONS. - 19 Climate variability simulated in GCMs. - 20 Climate-model responses to increased CO2 and other greenhouse gases. - 21 Modeling large climatic changes of the past. - 22 Changes in land use. - PART 6: FUTURE PROSPECTS. - 26 Climate system modeling prospects. - References. - Index
    Description / Table of Contents: It is now widely recognized that human activities are transforming the global environment. What will be the changes in climate caused by anthropogenic influences and how do these compare with natural variations? To address these questions there is an urgent need to understand and model the global climate system effectively. A central role of climate system models will be to help determine possible impacts and help guide possible future policies. Climate System Modeling provides a thorough grounding in climate dynamics and the issues involved but also the mathematical, physical, chemical and biological basis for the component models and the sources of uncertainty, the assumptions made and approximations introduced. Climate system models go beyond climate models to include all aspects of the climate system: the atmosphere, the ocean, the cryosphere (including snow, sea ice, and glaciers), the biosphere and terrestrial ecosystems, other land surface processes and additional parts of the hydrosphere including ricers, and all the complex interactions between these components. The biogeochemical cycles in both the atmosphere and the ocean are dealt with in detail, potentially allowing the carbon cycle, for instance, to be treated with some veracity. Instead of projecting and specifying what future atmospheric concentrations of carbon dioxide and methane might be, the goal of these models is to deal comprehensively with the carbon cycle and predict the future evolution of greenhouse gas concentrations, as well as the impact of those changes on the physical climate. Climate System Modeling is a comprehensive text which will appeal to students and researchers concerned with any aspect of climate and the study of related topics in the earth and environmental sciences.
    Type of Medium: Monograph available for loan
    Pages: XXIX, 788 S. : graph. Darst.
    ISBN: 0521432316
    Location: A 18 - must be ordered
    Branch Library: AWI Library
    Branch Library: PIK Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Climate dynamics 10 (1994), S. 107-134 
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract. The heat budget has been computed locally over the entire globe for each month of 1988 using compatible top-of-the-atmosphere radiation from the Earth Radiation Budget Experiment combined with European Centre for Medium Range Weather Forecasts atmospheric data. The effective heat sources and sinks (diabatic heating) and effective moisture sources and sinks for the atmosphere are computed and combined to produce overall estimates of the atmospheric energy divergence and the net flux through the Earth's surface. On an annual mean basis, this is directly related to the divergence of the ocean heat transport, and new computations of the ocean heat transport are made for the ocean basins. Results are presented for January and July, and the annual mean for 1988, along with a comprehensive discussion of errors. While the current results are believed to be the best available at present, there are substantial shortcomings remaining in the estimates of the atmospheric heat and moisture budgets. The issues, which are also present in all previous studies, arise from the diurnal cycle, problems with atmospheric divergence, vertical resolution, spurious mass imbalances, initialized versus uninitialized atmospheric analyses, and postprocessing to produce the atmospheric archive on pressure surfaces. Over land, additional problems arise from the complex surface topography, so that computed surface fluxes are more reliable over the oceans. The use of zonal means to compute ocean transports is shown to produce misleading results because a considerable part of the implied ocean transports is through the land. The need to compute the heat budget locally is demonstrated and results indicate lower ocean transports than in previous residual calculations which are therefore more compatible with direct ocean estimates. A Poisson equation is solved with appropriate boundary conditions of zero normal heat flux through the continental boundaries to obtain the ocean heat transport. Because of the poor observational data base, adjustments to the surface fluxes are necessary over the southern oceans. Error bars are estimated based on the large-scale spurious residuals over land of 30 W m–2 over 1000 km scales (1012 m2). In the Atlantic Ocean, a northward transport emerges at all latitudes with peak values of 1.1±0.2 PW (1 standard error) at 20 to 30 °N. Comparable values are achieved in the Pacific at 20 °N, so that the total is 2.1±0.3 PW. The peak southward transport is at 15 to 20 °S of 1.9±0.3 PW made up of strong components from both the Pacific and Indian Oceans and with a heat flux from the Pacific into the Indian Ocean in the Indonesian throughflow. The pattern of poleward heat fluxes is suggestive of a strong role for Ekman transports in the tropical regions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Climate dynamics 9 (1994), S. 303-319 
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract. Considerable evidence has emerged of a substantial decade-long change in the north Pacific atmosphere and ocean lasting from about 1976 to 1988. Observed significant changes in the atmospheric circulation throughout the troposphere revealed a deeper and eastward shifted Aleutian low pressure system in the winter half year which advected warmer and moister air along the west coast of North America and into Alaska and colder air over the north Pacific. Consequently, there were increases in temperatures and sea surface temperatures (SSTs) along the west coast of North America and Alaska but decreases in SSTs over the central north Pacific, as well as changes in coastal rainfall and streamflow, and decreases in sea ice in the Bering Sea. Associated changes occurred in the surface wind stress, and, by inference, in the Sverdrup transport in the north Pacific Ocean. Changes in the monthly mean flow were accompanied by a southward shift in the storm tracks and associated synoptic eddy activity and in the surface ocean sensible and latent heat fluxes. In addition to the changes in the physical environment, the deeper Aleutian low increased the nutrient supply as seen through increases in total chlorophyll in the water column, phytoplankton and zooplankton. These changes, along with the altered ocean currents and temperatures, changed the migration patterns and increased the stock of many fish species. A north Pacific (NP) index is defined to measure the decadal variations, and the temporal variability of the index is explored on daily, annual, interannual and decadal time scales. The dominant atmosphere-ocean relation in the north Pacific is one where atmospheric changes lead SSTs by one to two months. However, strong ties are revealed with events in the tropical Pacific, with changes in tropical Pacific SSTs leading SSTs in the north Pacific by three months. Changes in the storm tracks in the north Pacific help to reinforce and maintain the anomalous circulation in the upper troposphere. A hypothesis is put forward outlining the tropical and extratropical realtionships which stresses the role of tropical forcing but with important feedbacks in the extratropics that serve to emphasize the decadal relative to interannual time scales. The Pacific decadal timescale variations are linked to recent changes in the frequency and intensity of El Niño versus La Niña events but whether climate change associated with ”global warming" is a factor is an open question.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Climate dynamics 10 (1994), S. 107-134 
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract The heat budget has been computed locally over the entire globe for each month of 1988 using compatible top-of-the-atmosphere radiation from the Earth Radiation Budget Experiment combined with European Centre for Medium Range Weather Forecasts atmospheric data. The effective heat sources and sinks (diabatic heating) and effective moisture sources and sinks for the atmosphere are computed and combined to produce overall estimates of the atmospheric energy divergence and the net flux through the Earth's surface. On an annual mean basis, this is directly related to the divergence of the ocean heat transport, and new computations of the ocean heat transport are made for the ocean basins. Results are presented for January and July, and the annual mean for 1988, along with a comprehensive discussion of errors. While the current results are believed to be the best available at present, there are substantial shortcomings remaining in the estimates of the atmospheric heat and moisture budgets. The issues, which are also present in all previous studies, arise from the diurnal cycle, problems with atmospheric divergence, vertical resolution, spurious mass imbalances, initialized versus uninitialized atmospheric analyses, and postprocessing to produce the atmospheric archive on pressure surfaces. Over land, additional problems arise from the complex surface topography, so that computed surface fluxes are more reliable over the oceans. The use of zonal means to compute ocean transports is shown to produce misleading results because a considerable part of the implied ocean transports is through the land. The need to compute the heat budget locally is demonstrated and results indicate lower ocean transports than in previous residual calculations which are therefore more compatible with direct ocean estimates. A Poisson equation is solved with appropriate boundary conditions of zero normal heat flux through the continental boundaries to obtain the ocean heat transport. Because of the poor observational data base, adjustments to the surface fluxes are necessary over the southern oceans. Error bars are estimated based on the large-scale spurious residuals over land of 30 W m−2 over 1000 km scales (1012 m2). In the Atlantic Ocean, a northward transport emerges at all latitudes with peak values of 1.1±0.2 PW (1 standard error) at 20 to 30°N. Comparable values are achieved in the Pacific at 20°N, so that the total is 2.1±0.3 PW. The peak southward transport is at 15 to 20°S of 1.9±0.3 PW made up of strong components from both the Pacific and Indian Oceans and with a heat flux from the Pacific into the Indian Ocean in the Indonesian throughflow. The pattern of poleward heat fluxes is suggestive of a strong role for Ekman transports in the tropical regions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Climate dynamics 9 (1994), S. 303-319 
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Considerable evidence has emerged of a substantial decade-long change in the north Pacific atmosphere and ocean lasting from about 1976 to 1988. Observed significant changes in the atmospheric circulation throughout the troposphere revealed a deeper and eastward shifted Aleutian low pressure system in the winter half year which advected warmer and moister air along the west coast of North America and into Alaska and colder air over the north Pacific. Consequently, there were increases in temperatures and sea surface temperatures (SSTs) along the west coast of North America and Alaska but decreases in SSTs over the central north Pacific, as well as changes in coastal rainfall and streamflow, and decreases in sea ice in the Bering Sea. Associated changes occurred in the surface wind stress, and, by inference, in the Sverdrup transport in the north Pacific Ocean. Changes in the monthly mean flow were accompanied by a southward shift in the storm tracks and associated synoptic eddy activity and in the surface ocean sensible and latent heat fluxes. In addition to the changes in the physical environment, the deeper Aleutian low increased the nutrient supply as seen through increases in total chlorophyll in the water column, phytoplankton and zooplankton. These changes, along with the altered ocean currents and temperatures, changed the migration patterns and increased the stock of many fish species. A north Pacific (NP) index is defined to measure the decadal variations, and the temporal variability of the index is explored on daily, annual, interannual and decadal time scales. The dominant atmosphere-ocean relation in the north Pacific is one where atmospheric changes lead SSTs by one to two months. However, strong ties are revealed with events in the tropical Pacific, with changes in tropical Pacific SSTs leading SSTs in the north Pacific by three months. Changes in the storm tracks in the north Pacific help to reinforce and maintain the anomalous circulation in the upper troposphere. A hypothesis is put forward outlining the tropical and extratropical realtionships which stresses the role of tropical forcing but with important feed-backs in the extratropics that serve to emphasize the decadal relative to interannual time scales. The Pacific decadal timescale variations are linked to recent changes in the frequency and intensity of El Niño versus La Nina events but whether climate change associated with “global warming” is a factor is an open question.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-12-01
    Electronic ISSN: 2328-4277
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-07-01
    Description: The variability of zonally resolved tropical energy budgets in association with El Niño–Southern Oscillation (ENSO) is investigated. The most recent global atmospheric reanalyses from 1979 to 2011 are employed with removal of apparent discontinuities to obtain best possible temporal homogeneity. The growing length of record allows a more robust analysis of characteristic patterns of variability with cross-correlation, composite, and EOF methods. A quadrupole anomaly pattern is found in the vertically integrated energy divergence associated with ENSO, with centers over the Indian Ocean, the Indo-Pacific warm pool, the eastern equatorial Pacific, and the Atlantic. The smooth transition, particularly of the main maxima of latent and dry static energy divergence, from the western to the eastern Pacific is found to require at least two EOFs to be adequately described. The canonical El Niño pattern (EOF-1) and a transition pattern (EOF-2; referred to as El Niño Modoki by some authors) form remarkably coherent ENSO-related anomaly structures of the tropical energy budget not only over the Pacific but throughout the tropics. As latent and dry static energy divergences show strong mutual cancellation, variability of total energy divergence is smaller and more tightly coupled to local sea surface temperature (SST) anomalies and is mainly related to the ocean heat discharge and recharge during ENSO peak phases. The complexity of the structures throughout the tropics and their evolution during ENSO events along with their interactions with the annual cycle have often not been adequately accounted for; in particular, the El Niño Modoki mode is but part of the overall evolutionary patterns.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-04-23
    Description: Climate change from increased greenhouse gases arises from a global energy imbalance at the top of the atmosphere (TOA). TOA measurements of radiation from space can track changes over time but lack absolute accuracy. An inventory of energy storage changes shows that over 90% of the imbalance is manifested as a rise in ocean heat content (OHC). Data from the Ocean Reanalysis System, version 4 (ORAS4), and other OHC-estimated rates of change are used to compare with model-based estimates of TOA energy imbalance [from the Community Climate System Model, version 4 (CCSM4)] and with TOA satellite measurements for the year 2000 onward. Most ocean-only OHC analyses extend to only 700-m depth, have large discrepancies among the rates of change of OHC, and do not resolve interannual variability adequately to capture ENSO and volcanic eruption effects, all aspects that are improved with assimilation of multivariate data. ORAS4 rates of change of OHC quantitatively agree with the radiative forcing estimates of impacts of the three major volcanic eruptions since 1960 (Mt. Agung, 1963; El Chichón, 1982; and Mt. Pinatubo, 1991). The natural variability of the energy imbalance is substantial from month to month, associated with cloud and weather variations, and interannually mainly associated with ENSO, while the sun affects 15% of the climate change signal on decadal time scales. All estimates (OHC and TOA) show that over the past decade the energy imbalance ranges between about 0.5 and 1 W m−2. By using the full-depth ocean, there is a better overall accounting for energy, but discrepancies remain at interannual time scales between OHC- and TOA-based estimates, notably in 2008/09.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-09-15
    Description: An assessment is made of the global energy and hydrological cycles from eight current atmospheric reanalyses and their depiction of changes over time. A brief evaluation of the water and energy cycles in the latest version of the NCAR climate model referred to as CCSM4 is also given. The focus is on the mean ocean, land, and global precipitation P; the corresponding evaporation E; their difference corresponding to the surface freshwater flux E–P; and the vertically integrated atmospheric moisture transports. Using the model-based P and E, the time- and area-average E–P for the oceans, P–E for land, and the moisture transport from ocean to land should all be identical but are not close in most reanalyses, and often differ significantly from observational estimates of the surface return flow based on net river discharge into the oceans. Their differences reveal outstanding issues with atmospheric models and their biases, which are manifested as analysis increments in the reanalyses. The NCAR CCSM4, along with most reanalysis models, the exception being MERRA, has too-intense water cycling (P and E) over the ocean although ocean-to-land transports are very close to observed. Precipitation from reanalyses that assimilate moisture from satellite observations exhibits large changes identified with the changes in the observing system, as new and improved temperature and water vapor channels are assimilated and, while P improves after about 2002, E–P does not. Discrepancies among hydrological cycle components arise from analysis increments that can add or subtract moisture. The large-scale moisture budget divergences are more stable in time and similar across reanalyses than model-based estimates of E–P. Results are consistent with the view that recycling of moisture is too large in most models and the lifetime of moisture is too short. For the energy cycle, most reanalyses have spurious imbalances of ~10 W m−2 within the atmosphere, and ~5–10 W m−2 in net fluxes into the surface and to space. Major improvements are needed in model treatment and assimilation of moisture, and surface fluxes from reanalyses should only be used with great caution.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-10-04
    Description: The flows of energy and water from ocean to land are examined in the context of the land energy and water budgets, for land as a whole and for continents. Most atmospheric reanalyses have large errors of up to 15 W m−2 in the top-of-atmosphere (TOA) energy imbalance, and none include volcanic eruptions. The flow of energy from ocean to land is more reliable as it relies on analyzed wind, temperature, and moisture fields. It is examined for transports of the total, latent energy (LE), and dry static energy (DSE) to land as a whole and as zonal means. The net convergence of energy onto land is balanced by the loss of energy at TOA, measured by Clouds and the Earth’s Radiant Energy System (CERES), and again there are notable discrepancies. Only the ECMWF Interim Re-Analysis (ERA-I) is stable and plausible. Strong compensation between variations in LE and DSE transports onto land means that their sum is more stable over time, and the net transport of energy onto land is largely that associated with the hydrological cycle (LE). A more detailed examination is given of the energy and water budgets for Eurasia, North and South America, Australia, and Africa, making use of Gravity Recovery and Climate Experiment (GRACE) data for water storage on land and data on river discharge into the ocean. With ERA-I, the new land estimates for both water and energy are closer to achieving balances than in previous studies. As well as the annual means, the mean annual cycles are examined in detail along with uncertainty sampling estimates, but the main test used here is that of closure.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...