ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 26 (2013): 8476–8494, doi:10.1175/JCLI-D-12-00860.1.
    Description: Characteristics of atmospheric blocking in the Southern Hemisphere (SH) are explored in atmospheric general circulation model (AGCM) simulations with the Community Atmosphere Model, version 3, with a particular focus on the Australia–New Zealand sector. Preferred locations of blocking in SH observations and the associated seasonal cycle are well represented in the AGCM simulations, but the observed magnitude of blocking is underestimated throughout the year, particularly in late winter and spring. This is related to overly zonal flow due to an enhanced meridional pressure gradient in the model, which results in a decreased amplitude of the longwave trough/ridge pattern. A range of AGCM sensitivity experiments explores the effect on SH blocking of tropical heating, midlatitude sea surface temperatures, and land–sea temperature gradients created over the Australian continent during austral winter. The combined effects of tropical heating and extratropical temperature gradients are further explored in a configuration that is favorable for blocking in the Australia–New Zealand sector with warm SST anomalies to the north of Australia, cold to the southwest of Australia, warm to the southeast, and cool Australian land temperatures. The blocking-favorable configuration indicates a significant strengthening of the subtropical jet and a reduction in midlatitude flow, which results from changes in the thermal wind. While these overall changes in mean climate, predominantly forced by the tropical heating, enhance blocking activity, the magnitude of atmospheric blocking compared to observations is still underestimated. The blocking-unfavorable configuration with surface forcing anomalies of opposite sign results in a weakening subtropical jet, enhanced midlatitude flow, and significantly reduced blocking.
    Description: C.C.U. received support from the Australian Research Council through funding awarded to the Centre of Excellence for Climate System Science and the Penzance Endowed Fund at WHOI. P.C.M., M.J.P., and J.S.R. were funded by the CSIRO Climate Adaptation Flagship and the Managing Climate Variability R&D Program.
    Description: 2014-05-01
    Keywords: Australia ; Southern Hemisphere ; Atmosphere-ocean interaction ; Atmospheric circulation ; Blocking ; General circulation models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-07-15
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-03-01
    Description: The relative influences of Indian and Pacific Ocean modes of variability on Australian rainfall and soil moisture are investigated for seasonal, interannual, and decadal time scales. For the period 1900–2006, observations, reanalysis products, and hindcasts of soil moisture during the cool season (June–October) are used to assess the impacts of El Niño–Southern Oscillation (ENSO) and the Indian Ocean dipole (IOD) on southeastern Australia and the Murray–Darling Basin, two regions that have recently suffered severe droughts. A distinct asymmetry is found in the impacts of the opposite phases of both ENSO and IOD on Australian rainfall and soil moisture. There are significant differences between the dominant drivers of drought at interannual and decadal time scales. On interannual time scales, both ENSO and the IOD modify southeastern Australian soil moisture, with the driest (wettest) conditions over the southeast and more broadly over large parts of Australia occurring during years when an El Niño and a positive IOD event (La Niña and a negative IOD event) co-occur. The atmospheric circulation associated with these responses is discussed. Lower-frequency variability over southeastern Australia, however, including multiyear drought periods, seems to be more robustly related to Indian Ocean temperatures than Pacific conditions. The frequencies of both positive and negative IOD events are significantly different during periods of prolonged drought compared to extended periods of “normal” rainfall. In contrast, the frequency of ENSO events remains largely unchanged during prolonged dry and wet periods. For the Murray–Darling Basin, there appears to be a significant influence by La Niña and both positive and negative IOD events. In particular, La Niña plays a much more prominent role than for more southern regions, especially on interannual time scales and during prolonged wet periods. For prolonged dry (wet) periods, positive IOD events also occur in unusually high (low) numbers.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-11-14
    Description: The correspondence between short- and long-time-scale systematic errors in the Community Atmospheric Model, version 4 (CAM4) and version 5 (CAM5), is systematically examined. The analysis is based on the annual-mean data constructed from long-term “free running” simulations and short-range hindcasts. The hindcasts are initialized every day with the ECMWF analysis for the Year(s) of Tropical Convection. It has been found that most systematic errors, particularly those associated with moist processes, are apparent in day 2 hindcasts. These errors steadily grow with the hindcast lead time and typically saturate after five days with amplitudes comparable to the climate errors. Examples include the excessive precipitation in much of the tropics and the overestimate of net shortwave absorbed radiation in the stratocumulus cloud decks over the eastern subtropical oceans and the Southern Ocean at about 60°S. This suggests that these errors are likely the result of model parameterization errors as the large-scale flow remains close to observed in the first few days of the hindcasts. In contrast, other climate errors are present in the hindcasts, but with amplitudes that are significantly smaller than and do not approach their climate errors during the 6-day hindcasts. These include the cold biases in the lower stratosphere, the unrealistic double–intertropical convergence zone pattern in the simulated precipitation, and an annular mode bias in extratropical sea level pressure. This indicates that these biases could be related to slower processes such as radiative and chemical processes, which are important in the lower stratosphere, or the result of poor interactions of the parameterized physics with the large-scale flow.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-10-16
    Description: Characteristics of atmospheric blocking in the Southern Hemisphere (SH) are explored in atmospheric general circulation model (AGCM) simulations with the Community Atmosphere Model, version 3, with a particular focus on the Australia–New Zealand sector. Preferred locations of blocking in SH observations and the associated seasonal cycle are well represented in the AGCM simulations, but the observed magnitude of blocking is underestimated throughout the year, particularly in late winter and spring. This is related to overly zonal flow due to an enhanced meridional pressure gradient in the model, which results in a decreased amplitude of the longwave trough/ridge pattern. A range of AGCM sensitivity experiments explores the effect on SH blocking of tropical heating, midlatitude sea surface temperatures, and land–sea temperature gradients created over the Australian continent during austral winter. The combined effects of tropical heating and extratropical temperature gradients are further explored in a configuration that is favorable for blocking in the Australia–New Zealand sector with warm SST anomalies to the north of Australia, cold to the southwest of Australia, warm to the southeast, and cool Australian land temperatures. The blocking-favorable configuration indicates a significant strengthening of the subtropical jet and a reduction in midlatitude flow, which results from changes in the thermal wind. While these overall changes in mean climate, predominantly forced by the tropical heating, enhance blocking activity, the magnitude of atmospheric blocking compared to observations is still underestimated. The blocking-unfavorable configuration with surface forcing anomalies of opposite sign results in a weakening subtropical jet, enhanced midlatitude flow, and significantly reduced blocking.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-09-24
    Description: Previous research has found that global climate models (GCMs) usually simulate greater lower tropospheric stabilities compared to reanalysis data. To understand the origins of this bias, the authors examine hindcast simulations initialized with reanalysis data of six GCMs and find that four of the six models simulate within five days a positive bias in Arctic lower tropospheric stability during the Arctic polar night over sea ice regions. These biases in lower tropospheric stability are mainly due to cold biases in surface temperature, as very small potential temperature biases exist aloft. Similar to previous research, polar night surface temperature biases in the hindcast runs relate to all-sky downwelling longwave radiation in the models, which very much relates to the cloud liquid water. Also found herein are clear-sky longwave radiation biases and a fairly large clear-sky longwave radiation bias in the day one hindcast. This clear-sky longwave bias is analyzed by running the same radiation transfer model for each model’s temperature and moisture profile, and the model spread in clear-sky downwelling longwave radiation with the same radiative transfer model is found to be much less, suggesting that model differences other than temperature and moisture are aiding in the spread in downwelling longwave radiation. The six models were also analyzed in Atmospheric Model Intercomparison Project (AMIP) mode to determine if hindcast simulations are analogous to free-running simulations. Similar winter lower tropospheric stability biases occur in four of the six models with surface temperature biases relating to the winter lower tropospheric stability values.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1996-07-01
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1997-07-01
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-03-01
    Description: Changes in the metastability of the Southern Hemisphere 500-hPa circulation are examined using both cluster analysis techniques and split-flow blocking indices. The cluster methodology is a purely data-driven approach for parameterization whereby a multiscale approximation to nonstationary dynamical processes is achieved through optimal sequences of locally stationary fast vector autoregressive factor (VARX) processes and some slow (or persistent) hidden process switching between them. Comparison is made with blocking indices commonly used in weather forecasting and climate analysis to identify dynamically relevant metastable regimes in the 500-hPa circulation in both reanalysis and Atmospheric Model Intercomparison Project (AMIP) datasets. The analysis characterizes the metastable regime in both reanalysis and model datasets prior to 1978 as positive and negative phases of a hemispheric midlatitude blocking state with the southern annular mode (SAM) associated with a transition state. Post-1978, the SAM emerges as a true metastable state replacing the negative phase of the hemispheric blocking pattern. The hidden state frequency of occurrences exhibits strong trends. The blocking pattern dominates in the early 1980s, and then gradually decreases. There is a corresponding increase in the SAM frequency of occurrence. This trend is largely evident in the reanalysis summer and spring but was not evident in the AMIP dataset. Further comparison with the split-flow blocking indices reveals a superficial correspondence between the cluster hidden state frequency of occurrences and split-flow indices. Examination of composite states shows that the blocking indices capture splitting of the zonal flow whereas the cluster composites reflect coherent block formation. Differences in blocking climatologies from the respective methods are discussed.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-06-01
    Description: A method to predict an anisotropic expected forecast error distribution for consensus forecasts of tropical cyclone (TC) tracks is presented. The method builds upon the Goerss predicted consensus error (GPCE), which predicts the isotropic radius of the 70% isopleth of expected TC track error. Consensus TC track forecasts are computed as the mean of a collection of TC track forecasts from different models and are basin dependent. A novel aspect of GPCE is that it uses not only the uncertainty in the collection of constituent models to predict expected error, but also other features of the predicted storm, including initial intensity, forecast intensity, and storm speed. The new method, called GPCE along–across (GPCE-AX), takes a similar approach but separates the predicted error into across-track and along-track components. GPCE-AX has been applied to consensus TC track forecasts in the Atlantic (CONU/TVCN, where CONU is consensus version U and TVCN is the track variable consensus) and in the western North Pacific (consensus version W, CONW). The results for both basins indicate that GPCE-AX either outperforms or is equal in quality to GPCE in terms of reliability (the fraction of time verification is bound by the 70% uncertainty isopleths) and sharpness (the area bound by the 70% isopleths). GPCE-AX has been implemented at both the National Hurricane Center and at the Joint Typhoon Warning Center for real-time testing and evaluation.
    Print ISSN: 0882-8156
    Electronic ISSN: 1520-0434
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...