ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-26
    Description: © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Climate of the Past 9 (2013): 1111-1140, doi:10.5194/cp-9-1111-2013.
    Description: Both historical and idealized climate model experiments are performed with a variety of Earth system models of intermediate complexity (EMICs) as part of a community contribution to the Intergovernmental Panel on Climate Change Fifth Assessment Report. Historical simulations start at 850 CE and continue through to 2005. The standard simulations include changes in forcing from solar luminosity, Earth's orbital configuration, CO2, additional greenhouse gases, land use, and sulphate and volcanic aerosols. In spite of very different modelled pre-industrial global surface air temperatures, overall 20th century trends in surface air temperature and carbon uptake are reasonably well simulated when compared to observed trends. Land carbon fluxes show much more variation between models than ocean carbon fluxes, and recent land fluxes appear to be slightly underestimated. It is possible that recent modelled climate trends or climate–carbon feedbacks are overestimated resulting in too much land carbon loss or that carbon uptake due to CO2 and/or nitrogen fertilization is underestimated. Several one thousand year long, idealized, 2 × and 4 × CO2 experiments are used to quantify standard model characteristics, including transient and equilibrium climate sensitivities, and climate–carbon feedbacks. The values from EMICs generally fall within the range given by general circulation models. Seven additional historical simulations, each including a single specified forcing, are used to assess the contributions of different climate forcings to the overall climate and carbon cycle response. The response of surface air temperature is the linear sum of the individual forcings, while the carbon cycle response shows a non-linear interaction between land-use change and CO2 forcings for some models. Finally, the preindustrial portions of the last millennium simulations are used to assess historical model carbon-climate feedbacks. Given the specified forcing, there is a tendency for the EMICs to underestimate the drop in surface air temperature and CO2 between the Medieval Climate Anomaly and the Little Ice Age estimated from palaeoclimate reconstructions. This in turn could be a result of unforced variability within the climate system, uncertainty in the reconstructions of temperature and CO2, errors in the reconstructions of forcing used to drive the models, or the incomplete representation of certain processes within the models. Given the forcing datasets used in this study, the models calculate significant land-use emissions over the pre-industrial period. This implies that land-use emissions might need to be taken into account, when making estimates of climate–carbon feedbacks from palaeoclimate reconstructions.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-07-01
    Description: Anthropogenic emissions of greenhouse gases could lead to undesirable effects on oceans in coming centuries. Drawing on recommendations published by the German Advisory Council on Global Change, levels of unacceptable global marine change (so-called guardrails) are defined in terms of global mean temperature, sea level rise, and ocean acidification. A global-mean climate model [the Aggregated Carbon Cycle, Atmospheric Chemistry and Climate Model (ACC2)] is coupled with an economic module [taken from the Dynamic Integrated Climate–Economy Model (DICE)] to conduct a cost-effectiveness analysis to derive CO2 emission pathways that both minimize abatement costs and are compatible with these guardrails. Additionally, the “tolerable windows approach” is used to calculate a range of CO2 emissions paths that obey the guardrails as well as a restriction on mitigation rate. Prospects of meeting the global mean temperature change guardrail (2° and 0.2°C decade−1 relative to preindustrial) depend strongly on assumed values for climate sensitivity: at climate sensitivities 〉3°C the guardrail cannot be attained under any CO2 emissions reduction strategy without mitigation of non-CO2 greenhouse gases. The ocean acidification guardrail (0.2 unit pH decline relative to preindustrial) is less restrictive than the absolute temperature guardrail at climate sensitivities 〉2.5°C but becomes more constraining at lower climate sensitivities. The sea level rise and rate of rise guardrails (1 m and 5 cm decade−1) are substantially less stringent for ice sheet sensitivities derived in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report, but they may already be committed to violation if ice sheet sensitivities consistent with semiempirical sea level rise projections are assumed.
    Print ISSN: 1948-8327
    Electronic ISSN: 1948-8335
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-11-24
    Description: Recent studies have identified an approximately proportional relationship between global warming and cumulative carbon emissions, yet the robustness of this relationship has not been tested over a broad range of cumulative emissions and emission rates. This study explores the path dependence of the climate and carbon cycle response using an Earth system model of intermediate complexity forced with 24 idealized emissions scenarios across five cumulative emission groups (1275–5275 Gt C) with varying rates of emission. We find the century-scale climate and carbon cycle response after cessation of emissions to be approximately independent of emission pathway for all cumulative emission levels considered. The ratio of global mean temperature change to cumulative emissions – referred to as the transient climate response to cumulative carbon emissions (TCRE) – is found to be constant for cumulative emissions lower than ∼1500 Gt C but to decline with higher cumulative emissions. The TCRE is also found to decrease with increasing emission rate. The response of Arctic sea ice is found to be approximately proportional to cumulative emissions, while the response of the Atlantic Meridional Overturning Circulation does not scale linearly with cumulative emissions, as its peak response is strongly dependent on emission rate. Ocean carbon uptake weakens with increasing cumulative emissions, while land carbon uptake displays non-monotonic behavior, increasing up to a cumulative emission threshold of ∼2000 Gt C and then declining.
    Print ISSN: 2190-4979
    Electronic ISSN: 2190-4987
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-06-17
    Description: Recent studies have demonstrated the proportional relationship between global warming and cumulative carbon emissions, yet the robustness of this relationship has not been tested over a broad range of cumulative emissions and emission rates. This study explores the path dependence of the climate and carbon cycle response using an Earth System model of intermediate complexity forced with 24 idealized emissions scenarios across five cumulative emission groups (1275–5275 GtC) with varying rates of emission. We find the century-scale climate and carbon cycle response after cessation of emissions to be approximately independent of emission pathway for all cumulative emission levels considered. The ratio of global mean temperature change to cumulative emissions – referred to as the transient climate response to cumulative emissions (TCRE) – is found to be constant for cumulative emissions lower than ~1500 GtC, but to decline with higher cumulative emissions. The TCRE is also found to decrease with increasing emission rate. The response of Arctic sea ice is found to be approximately proportional to cumulative emissions, while the response of the Atlantic meridional overturning circulation (AMOC) does not scale linearly with cumulative emissions, as its peak response is strongly dependent on emission rate. Ocean carbon uptake weakens with increasing cumulative emissions, while land carbon uptake displays non-monotonic behavior, increasing up to a cumulative emission threshold of ~2000 GtC and then declining.
    Electronic ISSN: 2190-4995
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-05-16
    Description: Both historical and idealized climate model experiments are performed with a variety of Earth system models of intermediate complexity (EMICs) as part of a community contribution to the Intergovernmental Panel on Climate Change Fifth Assessment Report. Historical simulations start at 850 CE and continue through to 2005. The standard simulations include changes in forcing from solar luminosity, Earth's orbital configuration, CO2, additional greenhouse gases, land use, and sulphate and volcanic aerosols. In spite of very different modelled pre-industrial global surface air temperatures, overall 20th century trends in surface air temperature and carbon uptake are reasonably well simulated when compared to observed trends. Land carbon fluxes show much more variation between models than ocean carbon fluxes, and recent land fluxes appear to be slightly underestimated. It is possible that recent modelled climate trends or climate–carbon feedbacks are overestimated resulting in too much land carbon loss or that carbon uptake due to CO2 and/or nitrogen fertilization is underestimated. Several one thousand year long, idealized, 2 × and 4 × CO2 experiments are used to quantify standard model characteristics, including transient and equilibrium climate sensitivities, and climate–carbon feedbacks. The values from EMICs generally fall within the range given by general circulation models. Seven additional historical simulations, each including a single specified forcing, are used to assess the contributions of different climate forcings to the overall climate and carbon cycle response. The response of surface air temperature is the linear sum of the individual forcings, while the carbon cycle response shows a non-linear interaction between land-use change and CO2 forcings for some models. Finally, the preindustrial portions of the last millennium simulations are used to assess historical model carbon-climate feedbacks. Given the specified forcing, there is a tendency for the EMICs to underestimate the drop in surface air temperature and CO2 between the Medieval Climate Anomaly and the Little Ice Age estimated from palaeoclimate reconstructions. This in turn could be a result of unforced variability within the climate system, uncertainty in the reconstructions of temperature and CO2, errors in the reconstructions of forcing used to drive the models, or the incomplete representation of certain processes within the models. Given the forcing datasets used in this study, the models calculate significant land-use emissions over the pre-industrial period. This implies that land-use emissions might need to be taken into account, when making estimates of climate–carbon feedbacks from palaeoclimate reconstructions.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-08-28
    Description: Both historical and idealized climate model experiments are performed with a variety of Earth System Models of Intermediate Complexity (EMICs) as part of a community contribution to the Intergovernmental Panel on Climate Change Fifth Assessment Report. Historical simulations start at 850 CE and continue through to 2005. The standard simulations include changes in forcing from solar luminosity, Earth's orbital configuration, CO2, additional greenhouse gases, land-use, and sulphate and volcanic aerosols. In spite of very different modelled pre-industrial global surface air temperatures, overall 20th century trends in surface air temperature and carbon uptake are reasonably well simulated when compared to observed trends. Land carbon fluxes show much more variation between models than ocean carbon fluxes, and recent land fluxes seem to be underestimated. It is possible that recent modelled climate trends or climate-carbon feedbacks are overestimated resulting in too much land carbon loss or that carbon uptake due to CO2 and/or nitrogen fertilization is underestimated. Several one thousand year long, idealized, 2x and 4x CO2 experiments are used to quantify standard model characteristics, including transient and equilibrium climate sensitivities, and climate-carbon feedbacks. The values from EMICs generally fall within the range given by General Circulation Models. Seven additional historical simulations, each including a single specified forcing, are used to assess the contributions of different climate forcings to the overall climate and carbon cycle response. The response of surface air temperature is the linear sum of the individual forcings, while the carbon cycle response shows considerable synergy between land-use change and CO2 forcings for some models. Finally, the preindustrial portions of the last millennium simulations are used to assess historical model carbon-climate feedbacks. Given the specified forcing, there is a tendency for the EMICs to underestimate the drop in surface air temperature and CO2 between the Medieval Climate Anomaly and the Little Ice Age estimated from paleoclimate reconstructions. This in turn could be a result of errors in the reconstructions of volcanic and/or solar radiative forcing used to drive the models or the incomplete representation of certain processes or variability within the models. Given the datasets used in this study, the models calculate significant land-use emissions over the pre-industrial. This implies that land-use emissions might need to be taken into account, when making estimates of climate-carbon feedbacks from paleoclimate reconstructions.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-03-01
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  [Poster] In: AGU Fall Meeting 2014, 15.-19.12.2014, San Francisco, USA .
    Publication Date: 2018-03-15
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    In:  [Poster] In: US CLIVAR and OCB workshop on Ocean's Carbon and Heat Uptake: Uncertainties and Metrics, 13.12.2014, San Francisco, CA, USA .
    Publication Date: 2018-03-15
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  [Poster] In: ''Breaking the Ice'' Faculty of Environment (FENV) Seasonal Celebration, 02.12.2014, Burnaby, BC, Canada .
    Publication Date: 2018-03-15
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...