ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-12-01
    Print ISSN: 0196-2892
    Electronic ISSN: 1558-0644
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-03-14
    Description: The El Niño–Southern Oscillation (ENSO) response to anthropogenic climate change is assessed in the following 1° nominal resolution Community Climate System Model, version 4 (CCSM4) Coupled Model Intercomparison Project phase 5 (CMIP5) simulations: twentieth-century ensemble, preindustrial control, twenty-first-century projections, and stabilized 2100–2300 “extension runs.” ENSO variability weakens slightly with CO2; however, various significance tests reveal that changes are insignificant at all but the highest CO2 levels. Comparison with the 1850 control simulation suggests that ENSO changes may become significant on centennial time scales; the lack of signal in the twentieth- versus twenty-first-century ensembles is due to their limited duration. Changes to the mean state are consistent with previous studies: a weakening of the subtropical wind stress curl, an eastward shift of the tropical convective cells, a reduction in the zonal SST gradient, and an increase in vertical thermal stratification take place as CO2 increases. The extratropical thermocline deepens throughout the twenty-first century, with the tropical thermocline changing slowly in response. The adjustment time scale is set by the relevant ocean dynamics, and the delay in its effect on ENSO variability is not diminished by increasing ensemble size. The CCSM4 results imply that twenty-first-century simulations may simply be too short for identification of significant tropical variability response to climate change. An examination of atmospheric teleconnections, in contrast, shows that the remote influences of ENSO do respond rapidly to climate change in some regions, particularly during boreal winter. This suggests that changes to ENSO impacts may take place well before changes to oceanic tropical variability itself become significant.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-10-15
    Description: A new method to quantify changes in El Niño–Southern Oscillation (ENSO) variability is presented, using the overlap between probability distributions of the wavelet spectrum as measured by the wavelet probability index (WPI). Examples are provided using long integrations of three coupled climate models. When subsets of Niño-3.4 time series are compared, the width of the confidence interval on WPI has an exponential dependence on the length of the subset used, with a statistically identical slope for all three models. This exponential relationship describes the rate at which the system converges toward equilibrium and may be used to determine the necessary simulation length for robust statistics. For the three models tested, a minimum of 250 model years is required to obtain 90% convergence for Niño-3.4, longer than typical Intergovernmental Panel on Climate Change (IPCC) simulations. Applying the same decay relationship to observational data indicates that measuring ENSO variability with 90% confidence requires approximately 240 years of observations, which is substantially longer than the modern SST record. Applying hypothesis testing techniques to the WPI distributions from model subsets and from comparisons of model subsets to the historical Niño-3.4 index then allows statistically robust comparisons of relative model agreement with appropriate confidence levels given the length of the data record and model simulation.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-11-14
    Description: Air–sea fluxes from the Community Climate System Model version 4 (CCSM4) are compared with the Coordinated Ocean-Ice Reference Experiment (CORE) dataset to assess present-day mean biases, variability errors, and late twentieth-century trend differences. CCSM4 is improved over the previous version, CCSM3, in both air–sea heat and freshwater fluxes in some regions; however, a large increase in net shortwave radiation into the ocean may contribute to an enhanced hydrological cycle. The authors provide a new baseline for assessment of flux variance at annual and interannual frequency bands in future model versions and contribute a new metric for assessing the coupling between the atmospheric and oceanic planetary boundary layer (PBL) schemes of any climate model. Maps of the ratio of CCSM4 variance to CORE reveal that variance on annual time scales has larger error than on interannual time scales and that different processes cause errors in mean, annual, and interannual frequency bands. Air temperature and specific humidity in the CCSM4 atmospheric boundary layer (ABL) follow the sea surface conditions much more closely than is found in CORE. Sensible and latent heat fluxes are less of a negative feedback to sea surface temperature warming in the CCSM4 than in the CORE data with the model’s PBL allowing for more heating of the ocean’s surface.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-11-14
    Description: The influence of atmospheric CO2 concentration on the El Niño–Southern Oscillation (ENSO) is explored using 800-yr integrations of the NCAR Community Climate System Model, version 3.5 (CCSM3.5), with CO2 stabilized at the a.d. 1850, 1990, and 2050 levels. Model mean state changes with increased CO2 include preferential SST warming in the eastern equatorial Pacific, a weakening of the equatorial trade winds, increased vertical ocean stratification, and a reduction in the atmospheric Hadley and oceanic subtropical overturning circulations. The annual cycle of SST strengthens with CO2, likely related to unstable air–sea interactions triggered by an increased Northern Hemisphere land–sea temperature contrast. The mean trade wind structure changes asymmetrically about the equator, with increased convergence in the Northern Hemisphere and divergence in the Southern Hemisphere leading to corresponding deepening and shoaling of the thermocline. The proportion of eastern versus central Pacific–type El Niño events increases with CO2, but the significance of the changes is relatively low; ENSO amplitude also increases with CO2, although the change is insignificant at periods longer than 4 yr. The 2–4-yr ENSO response shows an enhancement in equatorial Kelvin wave variability, suggesting that stochastic triggering of El Niño events may be favored with higher CO2. However, the seasonal cycle–ENSO interaction is also modified by the asymmetric climatological changes, and forcing by the Southern Hemisphere becomes more important with higher CO2. Finally, higher-resolution CCSM4 control simulations show that ENSO weakens with CO2 given a sufficiently long integration time. The cause for the difference in ENSO climate sensitivity is not immediately obvious but may potentially be related to changes in westerly wind bursts or other sources of high-frequency wind stress variability.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-10-16
    Print ISSN: 2572-4517
    Electronic ISSN: 2572-4525
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-08-01
    Description: A geostrophic, hydrostatic, frontal or filamentary flow adjusts conservatively to accommodate a surface gravity wave field with wave-averaged, Stokes-drift vortex and Coriolis forces in an altered balanced state. In this altered state, the wave-balanced perturbations have an opposite cross-front symmetry to the original geostrophic state; e.g. The along-front flow perturbation is odd-symmetric about the frontal centre while the geostrophic flow is even-symmetric. The adjustment tends to make the flow scale closer to the deformation radius, and it induces a cross-front shape displacement in the opposite direction to the overturning effects of wave-aligned down-front and up-front winds. The ageostrophic, non-hydrostatic, adjusted flow may differ from the initial flow substantially, with velocity and buoyancy perturbations that extend over a larger and deeper region than the initial front and Stokes drift. The largest effect occurs for fronts that are wider than the mixed layer deformation radius and that fill about two-thirds of a well-mixed surface layer, with the Stokes drift spanning only the shallowest part of the mixed layer. For even deeper mixed layers, and especially for thinner or absent mixed layers, the wave-balanced adjustments are not as large. © 2013 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2005-07-01
    Description: Multiple-gyre ocean models have a weaker mean subtropical circulation than single-gyre calculations with the same viscosity and subtropical forcing. Traditionally, this reduction in circulation is attributed to an intergyre eddy vorticity flux that cancels some of the wind input, part of which does not require a Lagrangian mass exchange (theory of dissipative meandering). Herein the intergyre eddy vorticity flux is shown to be a controlling factor in barotropic models at high Reynolds number only with exactly antisymmetric gyres and slip boundary conditions. Almost no intergyre flux occurs when no-slip boundary conditions are used, yet the subtropical gyre is still significantly weaker in multiple-gyre calculations. Sinuous modes of instability present only in multiple gyres are shown here to vastly increase the eddy vorticity transport efficiency. This increase in efficiency reduces the mean circulation necessary for equilibrium. With slip boundary conditions, the intergyre eddy transport is possibly much larger. However, with wind forcing relevant for the ocean—two unequal gyres—a mean flow flux of vorticity rather than an eddy flux between the regions of opposing wind forcing is increasingly important with increasing Reynolds number. A physical rationalization of the differing results is provided by diagnosis of the equilibrium vorticity budget and eddy transport efficiency. Calculations varying 1) boundary conditions, 2) sources and sinks of vorticity, 3) eddy transport efficiency, and 4) the degree of symmetry of the gyres are discussed.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2009-12-01
    Description: The time-mean effects of eddies are studied in a model based on the Parsons–Veronis–Huang–Flierl models of the wind-driven gyre. Much of the analysis used for the steady solutions carries over if the model is cast in terms of the thickness-weighted mean velocity, because then mass transport is nondivergent in the absence of diabatic forcing. The model exemplifies the use of residual mean theory to simplify analysis. A result of the analysis is a boundary layer width in the case of a rapid upper-layer flow and weak lower-layer flow. This boundary layer width is comparable to an eddy mixing length when the typical eddy velocity is taken to be the long Rossby wave phase speed. Further analysis of the model illustrates important aspects of eddy behavior, model sensitivity to eddy fluxes, and model sensitivity to frictional parameters.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2007-09-01
    Description: The restratification of the oceanic surface mixed layer that results from lateral gradients in the surface density field is studied. The lateral gradients are shown to be unstable to ageostrophic baroclinic instabilities and slump from the horizontal to the vertical. These instabilities, which are referred to as mixed layer instabilities (MLIs), differ from instabilities in the ocean interior because of the weak surface stratification. Spatial scales are O(1–10) km, and growth time scales are on the order of a day. Linear stability analysis and fully nonlinear simulations are used to study MLIs and their impact on mixed layer restratification. The main result is that MLIs are a leading-order process in the ML heat budget acting to constantly restratify the surface ocean. Climate and regional ocean models do not resolve the scales associated with MLIs and are likely to underestimate the rate of ML restratification and consequently suffer from a bias in sea surface temperatures and ML depths. In a forthcoming paper, the authors discuss a parameterization scheme to include the effect of MLIs in ocean models.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...