ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-12-29
    Description: To interpret molecular dynamics simulations of complex systems, systematic dimensionality reduction methods such as principal component analysis (PCA) represent a well-established and popular approach. Apart from Cartesian coordinates, internal coordinates, e.g., backbone dihedral angles or various kinds of distances, may be used as input data in a PCA. Adopting two well-known model problems, folding of villin headpiece and the functional dynamics of BPTI, a systematic study of PCA using distance-based measures is presented which employs distances between C α -atoms as well as distances between inter-residue contacts including side chains. While this approach seems prohibitive for larger systems due to the quadratic scaling of the number of distances with the size of the molecule, it is shown that it is sufficient (and sometimes even better) to include only relatively few selected distances in the analysis. The quality of the PCA is assessed by considering the resolution of the resulting free energy landscape (to identify metastable conformational states and barriers) and the decay behavior of the corresponding autocorrelation functions (to test the time scale separation of the PCA). By comparing results obtained with distance-based, dihedral angle, and Cartesian coordinates, the study shows that the choice of input variables may drastically influence the outcome of a PCA.
    Electronic ISSN: 1931-9223
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-12-29
    Description: To interpret molecular dynamics simulations of complex systems, systematic dimensionality reduction methods such as principal component analysis (PCA) represent a well-established and popular approach. Apart from Cartesian coordinates, internal coordinates, e.g., backbone dihedral angles or various kinds of distances, may be used as input data in a PCA. Adopting two well-known model problems, folding of villin headpiece and the functional dynamics of BPTI, a systematic study of PCA using distance-based measures is presented which employs distances between C α -atoms as well as distances between inter-residue contacts including side chains. While this approach seems prohibitive for larger systems due to the quadratic scaling of the number of distances with the size of the molecule, it is shown that it is sufficient (and sometimes even better) to include only relatively few selected distances in the analysis. The quality of the PCA is assessed by considering the resolution of the resulting free energy landscape (to identify metastable conformational states and barriers) and the decay behavior of the corresponding autocorrelation functions (to test the time scale separation of the PCA). By comparing results obtained with distance-based, dihedral angle, and Cartesian coordinates, the study shows that the choice of input variables may drastically influence the outcome of a PCA.
    Print ISSN: 0021-9606
    Electronic ISSN: 1089-7690
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-02-18
    Description: We examine vibrational energy flow in dehydrated and hydrated villin headpiece subdomain HP36 by master equation simulations. Transition rates used in the simulations are obtained from communication maps calculated for HP36. In addition to energy flow along the main chain, we identify pathways for energy transport in HP36 via hydrogen bonding between residues quite far in sequence space. The results of the master equation simulations compare well with all-atom non-equilibrium simulations to about 1 ps following initial excitation of the protein, and quite well at long times, though for some residues we observe deviations between the master equation and all-atom simulations at intermediate times from about 1–10 ps. Those deviations are less noticeable for hydrated than dehydrated HP36 due to energy flow into the water.
    Print ISSN: 0021-9606
    Electronic ISSN: 1089-7690
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-02-18
    Description: We examine vibrational energy flow in dehydrated and hydrated villin headpiece subdomain HP36 by master equation simulations. Transition rates used in the simulations are obtained from communication maps calculated for HP36. In addition to energy flow along the main chain, we identify pathways for energy transport in HP36 via hydrogen bonding between residues quite far in sequence space. The results of the master equation simulations compare well with all-atom non-equilibrium simulations to about 1 ps following initial excitation of the protein, and quite well at long times, though for some residues we observe deviations between the master equation and all-atom simulations at intermediate times from about 1–10 ps. Those deviations are less noticeable for hydrated than dehydrated HP36 due to energy flow into the water.
    Electronic ISSN: 1931-9223
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-07-15
    Description: An additional value of the Avogadro constant was obtained by counting the atoms in isotopically enriched Si spheres. With respect to the previous determination, the spheres were etched and repolished to eliminate metal contaminations and to improve the roundness. In addition, all the input quantities—molar mass, lattice parameter, mass, and volume—were remeasured aiming at a smaller uncertainty. In order to make the values given in Andreas et al. [Metrologia 48 , S1 (2011)] and Azuma et al. [Metrologia 52 , 360 (2015)] usable for a least squares adjustment, we report about the estimate of their correlation.
    Print ISSN: 0047-2689
    Electronic ISSN: 1529-7845
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-10-08
    Description: Based on extensive ab initio calculations and the time-propagation of the nuclear Schrödinger equation, we study the vibrational relaxation dynamics and resulting spectral signatures of the OH stretch vibration of a hydrogen-bonded complex, HCO 2 − ⋅ H 2 O . Despite their smallness, it has been shown experimentally by Johnson and coworkers that the gas-phase infrared spectra of these types of complexes exhibit much of the complexity commonly observed for hydrogen-bonded systems. That is, the OH stretch band exhibits a significant red shift together with an extreme broadening and a pronounced substructure, which reflects its very strong anharmonicity. Employing an adiabatic separation of time scales between the three intramolecular high-frequency modes of the water molecule and the three most important intermolecular low-frequency modes of the complex, we calculate potential energy surfaces (PESs) of the ground and the first excited states of the high-frequency modes and identify a vibrational conical intersection between the PESs of the OH stretch fundamental and the HOH bend overtone. By performing a time-dependent propagation of the resulting system, we show that the conical intersection affects a coherent population transfer between the two states, the first step of which being ultrafast (60 fs) and irreversible. The subsequent relaxation of vibrational energy into the HOH bend and ground state occurs incoherently but also quite fast (1 ps), although the corresponding PESs are well separated in energy. Owing to the smaller effective mass difference between light and heavy degrees of freedom, the adiabatic ansatz is consequently less significant for vibrations than in the electronic case. Based on the model, we consider several approximations to calculate the measured Ar-tag action spectrum of HCO 2 − ⋅ H 2 O and achieve semiquantitative agreement with the experiment.
    Print ISSN: 0021-9606
    Electronic ISSN: 1089-7690
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-12-23
    Description: Based on a given time series, the data-driven Langevin equation (dLE) estimates the drift and the diffusion field of the dynamics, which are then employed to reproduce the essential statistical and dynamical features of the original time series. Because the propagation of the dLE requires only local information, the input data are neither required to be Boltzmann weighted nor to be a continuous trajectory. Similar to a Markov state model, the dLE approach therefore holds the promise of predicting the long-time dynamics of a biomolecular system from relatively short trajectories which can be run in parallel. The practical applicability of the approach is shown to be mainly limited by the initial sampling of the system’s conformational space obtained from the short trajectories. Adopting extensive molecular dynamics simulations of the unfolding and refolding of a short peptide helix, it is shown that the dLE approach is able to describe microsecond conformational dynamics from a few hundred nanosecond trajectories. In particular, the dLE quantitatively reproduces the free energy landscape and the associated conformational dynamics along the chosen five-dimensional reaction coordinate.
    Print ISSN: 0021-9606
    Electronic ISSN: 1089-7690
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-07-08
    Description: Principal component analysis of molecular dynamics simulations is a popular method to account for the essential dynamics of the system on a low-dimensional free energy landscape. Using Cartesian coordinates, first the translation and overall rotation need to be removed from the trajectory. Since the rotation depends via the moment of inertia on the molecule's structure, this separation is only straightforward for relatively rigid systems. Adopting millisecond molecular dynamics simulations of the folding of villin headpiece and the functional dynamics of BPTI provided by D. E. Shaw Research, it is demonstrated via a comparison of local and global rotational fitting that the structural dynamics of flexible molecules necessarily results in a mixing of overall and internal motion. Even for the small-amplitude functional motion of BPTI, the conformational distribution obtained from a Cartesian principal component analysis therefore reflects to some extend the dominant overall motion rather than the much smaller internal motion of the protein. Internal coordinates such as backbone dihedral angles, on the other hand, are found to yield correct and well-resolved energy landscapes for both examples. The virtues and shortcomings of the choice of various fitting schemes and coordinate sets as well as the generality of these results are discussed in some detail.
    Electronic ISSN: 1931-9223
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-07-08
    Description: Principal component analysis of molecular dynamics simulations is a popular method to account for the essential dynamics of the system on a low-dimensional free energy landscape. Using Cartesian coordinates, first the translation and overall rotation need to be removed from the trajectory. Since the rotation depends via the moment of inertia on the molecule's structure, this separation is only straightforward for relatively rigid systems. Adopting millisecond molecular dynamics simulations of the folding of villin headpiece and the functional dynamics of BPTI provided by D. E. Shaw Research, it is demonstrated via a comparison of local and global rotational fitting that the structural dynamics of flexible molecules necessarily results in a mixing of overall and internal motion. Even for the small-amplitude functional motion of BPTI, the conformational distribution obtained from a Cartesian principal component analysis therefore reflects to some extend the dominant overall motion rather than the much smaller internal motion of the protein. Internal coordinates such as backbone dihedral angles, on the other hand, are found to yield correct and well-resolved energy landscapes for both examples. The virtues and shortcomings of the choice of various fitting schemes and coordinate sets as well as the generality of these results are discussed in some detail.
    Print ISSN: 0021-9606
    Electronic ISSN: 1089-7690
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...