ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (1)
Collection
Publisher
Years
  • 2015-2019  (1)
Year
  • 1
    Publication Date: 2018-01-02
    Description: Energies, Vol. 11, Pages 65: Energy Consumption Prediction of a Greenhouse and Optimization of Daily Average Temperature Energies doi: 10.3390/en11010065 Authors: Yongtao Shen Ruihua Wei Lihong Xu Greenhouses are high energy-consuming and anti-seasonal production facilities. In some cases, energy consumption in greenhouses accounts for 50% of the cost of greenhouse production. The high energy consumption has become a major factor hindering the development of greenhouses. In order to improve the energy efficiency of the greenhouse, it is important to predict its energy consumption. In this study, the energy consumption mathematical model of a Venlo greenhouse is established based on the principle of energy conservation. Three optimization algorithms are used to identify the parameters which are difficult to determine in the energy consumption model. In order to examine the accuracy of the model, some verifications are made. The goal of achieving high yield, high quality and high efficiency production is a problem in the study of greenhouse environment control. Combining the prediction model of greenhouse energy consumption with the relatively accurate weather forecast data for the next week, the energy consumption of greenhouse under different weather conditions is predicted. Taking the minimum energy consumption as the objective function, the indoor daily average temperatures of 7 days are optimized to provide the theoretical reference for the decision-making of heating in the greenhouse. The results show that the optimized average daily temperatures save 9% of the energy cost during a cold wave.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...