ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-07-25
    Description: Ten wavelength channels of calibrated radiance image data from the sunlit Earth are obtained every 65 min during Northern Hemisphere summer from the EPIC (Earth Polychromatic Imaging Camera) instrument on the DSCOVR (Deep Space Climate Observatory) satellite located near the Earth–Sun Lagrange 1 point (L1), about 1.5 million km from the Earth. The L1 location permitted seven observations of the Moon's shadow on the Earth for about 3 h during the 21 August 2017 eclipse. Two of the observations were timed to coincide with totality over Casper, Wyoming, and Columbia, Missouri. Since the solar irradiances within five channels (λi=388, 443, 551, 680, and 780 nm) are not strongly absorbed in the atmosphere, they can be used for characterizing the eclipse reduction in reflected radiances for the Earth's sunlit face containing the eclipse shadow. Five channels (λi=317.5, 325, 340, 688, and 764 nm) that are partially absorbed in the atmosphere give consistent reductions compared to the non-absorbed channels. This indicates that cloud reflectivities dominate the 317.5–780 nm radiances reflected back to space from the sunlit Earth's disk with a significant contribution from Rayleigh scattering for the shorter wavelengths. An estimated reduction of 10 % was obtained for spectrally integrated radiance (387 to 781 nm) reflected from the sunlit Earth towards L1 for two sets of observations on 21 August 2017, while the shadow was in the vicinity of Casper, Wyoming (42.8666∘ N, 106.3131∘ W; centered on 17:44:50 UTC), and Columbia, Missouri (38.9517∘ N, 92.3341∘ W; centered on 18:14:50 UTC). In contrast, when non-eclipse days (20 and 23 August) are compared for each wavelength channel, the change in reflected light is much smaller (less than 1 % for 443 nm compared to 9 % (Casper) and 8 % (Columbia) during the eclipse). Also measured was the ratio REN(λi) of reflected radiance on adjacent non-eclipse days divided by radiances centered in the eclipse totality region with the same geometry for all 10 wavelength channels. The measured REN(443 nm) was smaller for Columbia (169) than for Casper (935), because Columbia had more cloud cover than Casper. REN(λi) forms a useful test of a 3-D radiative transfer models for an eclipse in the presence of optically thin clouds. Specific values measured at Casper with thin clouds are REN(340 nm) = 475, REN(388 nm) = 3500, REN(443 nm) = 935, REN(551 nm) = 5455, REN(680 nm) = 220, and REN(780 nm) = 395. Some of the variability is caused by changing cloud amounts within the moving region of totality during the 2.7 min needed to measure all 10 wavelength channels.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-08-24
    Print ISSN: 2169-897X
    Electronic ISSN: 2169-8996
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
  • 4
  • 5
    Publication Date: 2018-02-12
    Description: Ten wavelength channels of calibrated radiance image data from the Sunlit Earth are obtained every 65 minutes during Northern Hemisphere summer from the DSCOVR/EPIC instrument located near the Earth-Sun Lagrange-1 point (L1), 1.5 million km from the Earth. The L1 location permitted seven observations of the Moon’s shadow on the Earth for about 3 hours during the 21 August 2017 eclipse. Two of the observations were timed to be over Casper, Wyoming and Columbia, Missouri. Since, the solar irradiances within 5 channels (λi = 388, 443, 551, 680, and 780 nm) are not strongly absorbed in the atmosphere, they can be used for characterizing eclipse reduction in reflected radiances for the sunlit face of the Earth containing the eclipse shadow. Five channels (λi = 317.5, 325, 340, 688, and 764 nm) that are partially absorbed in the atmosphere give consistent reductions compared to the non-absorbed channels. This indicates that cloud reflectivities dominate the 317.5 to 780 nm radiances reflected back to space from the sunlit Earth’s disk with a strong contribution from Rayleigh scattering for the shorter wavelengths. A reduction of 9.7 ± 1.7 % in the radiance (387 to 781 nm) reflected from the Earth towards L1 was obtained for the set of observations on 21 August 2017, while the shadow was in the vicinity of Casper, Wyoming (42.8666° N, 106.3131° W, centered on 17:44:50 UTC). In contrast, when successive non-eclipse days are compared for each wavelength channel, the change in reflected light is much smaller (less than 1 % for 443 nm compared to 9 % during the eclipse). Also measured was the spatially averaged ratio of reflected radiance within the eclipse totality region to radiances for the same geometry on adjacent non-eclipse days for all 10 wavelength channels. The measured was smaller for Columbia (35) than for Casper (122), because Columbia had more cloud cover than Casper. REN(λi) forms a useful test of 3-D radiative transfer models for an eclipse in the presence of optically thin clouds. A previously published clear-sky model (Emde and Mayer, 2007) shows results for a nearly overhead eclipse had REN(340 nm)=1.7 x 104 compared to the maximum measured non-averaged REN(340) at Casper of 515 ± 27 with optically thin clouds under similar geometrical conditions.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-10-05
    Description: Earth’s reflectivity is among the key parameters of climate research. National Aeronautics and Space Administration (NASA)’s Earth Polychromatic Imaging Camera (EPIC) onboard National Oceanic and Atmospheric Administration (NOAA)’s Deep Space Climate Observatory (DSCOVR) spacecraft provides spectral reflectance of the entire sunlit Earth in the near backscattering direction every 65 to 110 min. Unlike EPIC, sensors onboard the Earth Orbiting Satellites (EOS) sample reflectance over swaths at a specific local solar time (LST) or over a fixed area. Such intrinsic sampling limits result in an apparent Earth’s reflectivity. We generated spectral reflectance over sampling areas using EPIC data. The difference between the EPIC and EOS estimates is an uncertainty in Earth’s reflectivity. We developed an Earth Reflector Type Index (ERTI) to discriminate between major Earth atmosphere components: clouds, cloud-free ocean, bare and vegetated land. Temporal variations in Earth’s reflectivity are mostly determined by clouds. The sampling area of EOS sensors may not be sufficient to represent cloud variability, resulting in biased estimates. Taking EPIC reflectivity as a reference, low-earth-orbiting-measurements at the sensor-specific LST tend to overestimate EPIC values by 0.8%to 8%. Biases in geostationary orbiting approximations due to a limited sampling area are between -0.7% and 12%. Analyses of ERTI-based Earth component reflectivity indicate that the disagreement between EPIC and EOS estimates depends on the sampling area, observation time and vary between -10% and 23%.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-24
    Description: We use the spectrally invariant method to study the variability of cloud optical thickness (τ) and droplet effective radius (reff) in transition zones between the cloudy and clear-sky columns observed by Shortwave Array Spectroradiometer-Zenith at the Southern Great Plains Central Facility site (SGP C1) and during the Marine ARM GPCI Investigation of Clouds (MAGIC) field campaign. The spectrally invariant method approximates the spectra in the transition zone as a linear combination of definitely clear and definitely cloudy spectra. The slope and intercept of the linear relations characterize τ and reff in the transition region, respectively. The radiative transfer model simulations show that that (i) the slope of the visible band is positively correlated with τ, while (ii) the intercept of the near-infrared band has a high negative correlation with reff. We have analyzed 22 cloud edge cases from the SGP and MAGIC and found that from cloud to clear in the transitions, (a) the slopes of the visible band decrease, indicating the decrease of τ toward cloud edges, and (b) the intercepts of the near-infrared band show a much more significant increase at the SGP than from the MAGIC. The results from observed cases suggest that while τ decreases for all cases, the decrease in reff is much more significant for cloud over land at the SGP site compared to the ocean counterpart during the MAGIC campaign. ©2019. American Geophysical Union. All Rights Reserved.
    Print ISSN: 2169-897X
    Electronic ISSN: 2169-8996
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: Ten wavelength channels of calibrated radiance image data from the sunlit Earth are obtained every 65 min during Northern Hemisphere summer from the EPIC (Earth Polychromatic Imaging Camera) instrument on the DSCOVR (Deep Space Climate Observatory) satellite located near the Earth-Sun Lagrange 1 point (L1), about 1.5 million km from the Earth. The L1 location permitted seven observations of the Moon's shadow on the Earth for about 3 h during the 21 August 2017 eclipse. Two of the observations were timed to coincide with totality over Casper, Wyoming, and Columbia, Missouri. Since the solar irradiances within five channels (i = 388, 443, 551, 680, and 780 nm) are not strongly absorbed in the atmosphere, they can be used for characterizing the eclipse reduction in reflected radiances for the Earth's sunlit face containing the eclipse shadow. Five channels (i = 317:5, 325, 340, 688, and 764 nm) that are partially absorbed in the atmosphere give consistent reductions compared to the non-absorbed channels. This indicates that cloud reflectivities dominate the 317.5-780 nm radiances reflected back to space from the sunlit Earth's disk with a significant contribution from Rayleigh scattering for the shorter wavelengths. An estimated reduction of 10% was obtained for spectrally integrated radiance (387 to 781 nm) reflected from the sunlit Earth towards L1 for two sets of observations on 21 August 2017, while the shadow was in the vicinity of Casper, Wyoming (42.8666 N, 106.3131 W; centered on 17:44:50 UTC), and Columbia, Missouri (38.9517 N, 92.3341 W; centered on 18:14:50 UTC). In contrast, when non-eclipse days (20 and 23 August) are compared for each wavelength channel, the change in reflected light is much smaller (less than 1% for 443 nm compared to 9% (Casper) and 8% (Columbia) during the eclipse). Also measured was the ratio R(sub EN)(i) of reflected radiance on adjacent non-eclipse days divided by radiances centered in the eclipse totality region with the same geometry for all 10 wavelength channels. The measured R(sub EN)(443 nm) was smaller for Columbia (169) than for Casper (935), because Columbia had more cloud cover than Casper. R(sub EN)(i) forms a useful test of a 3-D radiative transfer models for an eclipse in the presence of optically thin clouds. Specific values measured at Casper with thin clouds are R(sub EN)(340 nm)=475, R(sub EN)(388 nm)=3500, REN(443 nm)=935, REN(551 nm)=5455, REN(680 nm)=220, and R(sub EN)(780 nm)=395. Some of the variability is caused by changing cloud amounts within the moving region of totality during the 2.7 min needed to measure all 10 wavelength channels.
    Keywords: Instrumentation and Photography; Geosciences (General)
    Type: GSFC-E-DAA-TN61664 , GSFC-E-DAA-TN62797 , Atmospheric Measurement Techniques (ISSN 1867-1381) (e-ISSN 1867-8548); 11; 7; 4373-4388
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-31
    Description: We use the spectrally-invariant method to study the variability of cloud optical thickness () and droplet effective radius (reff) in transition zones between the cloudy and clear sky columns observed by Shortwave Array Spectroradiometer-Zenith (SASZe) at the Southern Great Plains Central Facility site (SGP C1) and during the Marine ARM GPCI Investigation of Clouds (MAGIC) field campaign. The spectrally-invariant method approximates the spectra in the transition zone as a linear combination of definitely clear and definitely cloudy spectra. The slope and intercept of the linear relations characterize and reff in the transition region, respectively. The radiative transfer model simulations show that that (i) the slope of the visible (VIS) band is positively correlated with while (ii) the intercept of the near-infrared (NIR) band has a high negative correlation with reff. We have analyzed 22 cloud edge cases from the SGP and MAGIC and found that from cloud to clear in the transitions (a) the slopes of the VIS band decrease, indicating the decrease of towards cloud edges; (b) the intercepts of the NIR band show a much more significant increase at the SGP than from the MAGIC. The results from observed cases suggest that while decreases for all cases, the decrease in reff is much more significant for cloud over land at the SGP site compared to the ocean counterpart during the MAGIC campaign.
    Keywords: Geosciences (General)
    Type: GSFC-E-DAA-TN72584 , Journal Geophysical Research Atmospheres (ISSN 2169-897X) (e-ISSN 2169-8996); 124; 15; 8707-8721
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: A two-layer model (2LM) was developed in our earlier studies to estimate the clear sky reflectance enhancement due to cloud-molecular radiative interaction at MODIS at 0.47 micrometers. Recently, we extended the model to include cloud-surface and cloud-aerosol radiative interactions. We use the LES/SHDOM simulated 3D true radiation fields to test the 2LM for reflectance enhancement at 0.47 micrometers. We find: The simple model captures the viewing angle dependence of the reflectance enhancement near cloud, suggesting the physics of this model is correct; the cloud-molecular interaction alone accounts for 70 percent of the enhancement; the cloud-surface interaction accounts for 16 percent of the enhancement; the cloud-aerosol interaction accounts for an additional 13 percent of the enhancement. We conclude that the 2LM is simple to apply and unbiased.
    Keywords: Meteorology and Climatology; Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN24117 , 2015 MODIS-VIIRS Science Team Meeting; May 18, 2015 - May 22, 2015; Silver Spring, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...