ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (22)
Collection
Years
Year
  • 1
    Publication Date: 2019-03-20
    Description: The first atmospheric observations of octafluorooxolane (octafluorotetrahydrofuran, c-C4F8O), a persistent greenhouse gas, are reported. In addition, a complementary laboratory study of its most likely atmospheric loss processes, its infrared absorption spectrum, and global warming potential (GWP) are reported. First atmospheric measurements of c-C4F8O are provided from the Cape Grim Air Archive (41∘ S, Tasmania, Australia, 1978–present), supplemented by two firn air samples from Antarctica, in situ measurements of ambient air at Aspendale, Victoria (38∘ S), and a few archived air samples from the Northern Hemisphere. The atmospheric abundance in the Southern Hemisphere has monotonically grown over the past decades and leveled at 74 ppq (parts per quadrillion, femtomole per mole in dry air) by 2015–2018. The growth rate of c-C4F8O has decreased from a maximum in 2004 of 4.0 to
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-03-26
    Description: High frequency measurements of trifluoromethane (HFC-23, CHF3), a potent hydrofluorocarbon greenhouse gas, largely emitted to the atmosphere as a by-product of the production of the hydrochlorofluorocarbon HCFC-22 (CHClF2), at five core stations of the Advanced Global Atmospheric Gases Experiment (AGAGE) network, combined with measurements on firn air, old Northern Hemisphere air samples and Cape Grim Air Archive (CGAA) air samples, are used to explore the current and historic changes in the atmospheric abundance of HFC-23. These measurements are used in combination with the AGAGE 2-D atmospheric 12-box model and a Bayesian inversion methodology to determine model atmospheric mole fractions and the history of global HFC-23 emissions. The global modelled annual mole fraction of HFC-23 in the background atmosphere was 28.9 ± 0.6 pmol mol−1 at the end of 2016, representing a 28 % increase from 22.6 ± 0.4 pmol mol−1 in 2009. Over the same time frame, the modelled mole fraction of HCFC-22 increased by 19 % from 199 ± 2 to 237 ± 2 pmol mol−1. However, unlike HFC-23, the annual average HCFC-22 growth rate slowed from 2009 to 2016 at an annual average rate of −0.5 pmol mol−1 yr−2. This slowing atmospheric growth is consistent with HCFC-22 moving from dispersive (high fractional emissions) to feedstock (low fractional emissions) uses, with HFC-23 emissions remaining as a consequence of incomplete mitigation from all HCFC-22 production.Our results demonstrate that, following a minimum in HFC-23 global emissions in 2009 of 9.6 ± 0.6, emissions increased to a maximum in 2014 of 14.5 ± 0.6 Gg yr−1 and then declined to 12.7 ± 0.6 Gg yr−1 (157 Mt CO2 eq. yr−1) in 2016. The 2009 emissions minimum is consistent with estimates based on national reports and is likely a response to the implementation of the Clean Development Mechanism (CDM) to mitigate HFC-23 emissions by incineration in developing (non-Annex 1) countries under the Kyoto Protocol. Our derived cumulative emissions of HFC-23 during 2010–2016 were 89 ± 2 Gg (1.1 ± 0.2 Gt CO2 eq.), which led to an increase in radiative forcing of 1.0 ± 0.1 mW m−2 over the same period. Although the CDM had reduced global HFC-23 emissions, it cannot now offset the higher emissions from increasing HCFC-22 production in non-Annex 1 countries, as the CDM was closed to new entrants in 2009. We also find that the cumulative European HFC-23 emissions from 2010 to 2016 were  ∼  1.3 Gg, corresponding to just 1.5 % of cumulative global HFC-23 emissions over this same period. The majority of the increase in global HFC-23 emissions since 2010 is attributed to a delay in the adoption of mitigation technologies, predominantly in China and East Asia. However, a reduction in emissions is anticipated, when the Kigali 2016 amendment to the Montreal Protocol, requiring HCFC and HFC production facilities to introduce destruction of HFC-23, is fully implemented.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-01-25
    Description: Based on observations of the chlorofluorocarbons CFC-13 (chlorotrifluoromethane), ΣCFC-114 (combined measurement of both isomers of dichlorotetrafluoroethane), and CFC-115 (chloropentafluoroethane) in atmospheric and firn samples, we reconstruct records of their tropospheric histories spanning nearly 8 decades. These compounds were measured in polar firn air samples, in ambient air archived in canisters, and in situ at the AGAGE (Advanced Global Atmospheric Gases Experiment) network and affiliated sites. Global emissions to the atmosphere are derived from these observations using an inversion based on a 12-box atmospheric transport model. For CFC-13, we provide the first comprehensive global analysis. This compound increased monotonically from its first appearance in the atmosphere in the late 1950s to a mean global abundance of 3.18 ppt (dry-air mole fraction in parts per trillion, pmol mol−1) in 2016. Its growth rate has decreased since the mid-1980s but has remained at a surprisingly high mean level of 0.02 ppt yr−1 since 2000, resulting in a continuing growth of CFC-13 in the atmosphere. ΣCFC-114 increased from its appearance in the 1950s to a maximum of 16.6 ppt in the early 2000s and has since slightly declined to 16.3 ppt in 2016. CFC-115 increased monotonically from its first appearance in the 1960s and reached a global mean mole fraction of 8.49 ppt in 2016. Growth rates of all three compounds over the past years are significantly larger than would be expected from zero emissions. Under the assumption of unchanging lifetimes and atmospheric transport patterns, we derive global emissions from our measurements, which have remained unexpectedly high in recent years: mean yearly emissions for the last decade (2007–2016) of CFC-13 are at 0.48 ± 0.15 kt yr−1 (〉 15 % of past peak emissions), of ΣCFC-114 at 1.90 ± 0.84 kt yr−1 (∼ 10 % of peak emissions), and of CFC-115 at 0.80 ± 0.50 kt yr−1 (〉 5 % of peak emissions). Mean yearly emissions of CFC-115 for 2015–2016 are 1.14 ± 0.50 kt yr−1 and have doubled compared to the 2007–2010 minimum. We find CFC-13 emissions from aluminum smelters but if extrapolated to global emissions, they cannot account for the lingering global emissions determined from the atmospheric observations. We find impurities of CFC-115 in the refrigerant HFC-125 (CHF2CF3) but if extrapolated to global emissions, they can neither account for the lingering global CFC-115 emissions determined from the atmospheric observations nor for their recent increases. We also conduct regional inversions for the years 2012–2016 for the northeastern Asian area using observations from the Korean AGAGE site at Gosan and find significant emissions for ΣCFC-114 and CFC-115, suggesting that a large fraction of their global emissions currently occur in northeastern Asia and more specifically on the Chinese mainland.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-05-04
    Description: The high-resolution CO2 record from Law Dome ice core reveals that atmospheric CO2 concentration stalled during the 1940s (so-called CO2 plateau). This stalling implies the persistence of a sink of the same magnitude as the concurrent fossil fuel emissions, perhaps sustained for as long as a decade or more. This sink has been previously attributed to the ocean, conceivably as a response to the very strong El Niño event in 1940–42. However, this explanation is questionable, as recent ocean CO2 data indicate that the range of variability in the ocean sink has been rather modest in recent decades, and El Niño events have generally led to higher growth-rates of atmospheric CO2 due to the offsetting terrestrial response. Here, we use the most up-to-date information on the different terms of the carbon budget: fossil fuel emissions, four estimates of land-use change (LUC) emissions, ocean uptake from two different reconstructions, and the terrestrial sink modelled by the TRENDY project. Evaluating whether these datasets provide further insight about the 1940s plateau and its causes, we find that, they give a plausible explanation for most of the 20th century carbon budget, especially from 1970 onwards, but they greatly overestimate atmospheric CO2 growth rate during the plateau period, as well as in the 1960s. The mismatch between reconstructions and observations during the CO2 plateau epoch of 1940–1950 ranges between 0.9–2.0 Pg C yr−1, depending on the LUC dataset considered. This mismatch may be explained by: i) decadal variability in the ocean carbon sink not accounted for in the reconstructions we used; ii) a further terrestrial sink currently missing in the estimates by land-surface models; iii) land-use change processes not included in the current datasets. Ocean carbon models from CMIP5 indicate that natural variability in the ocean carbon sink could explain an additional 0.5 Pg C yr−1 uptake, but it is unlikely to be higher. The impact of the 1940–42 El Niño on the observed stabilization of atmospheric CO2 cannot be confirmed nor discarded, as TRENDY models do not reproduce the expected concurrent strong decrease in terrestrial uptake. Nevertheless, this would further increase the mismatch between observed and modelled CO2 growth rate during the CO2 plateau epoch. Tests performed using the OSCAR (v2.2) model, indicate that changes in land use not correctly accounted for during the period (coinciding with drastic socioeconomic changes during WW2) could contribute to the additional sink required.Thus, the previously proposed ocean hypothesis for the 1940s plateau cannot be confirmed by independent data. Further efforts are required to reduce uncertainty in the different terms of the carbon budget during the first half of the 20th century, and to better understand the long-term variability of the ocean and terrestrial CO2 sinks.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-05-09
    Description: Recent studies have shown that semi-arid ecosystems in Australia may be responsible for a significant part of the interannual variability in the global concentration of atmospheric carbon dioxide. Here we use a multiple constraints approach to calibrate a land surface model of Australian terrestrial carbon and water cycles, with a focus on interannual variability. We include calibration of the response of heterotrophic respiration to soil moisture. We also explore the effect on modelled interannual variability of parameter equifinality, whereby multiple combinations of parameters can give an equally acceptable fit to calibration data. We estimate interannual variability of Australian net ecosystem production (NEP) of 0.12–0.21 PgC yr−1 (1σ) over 1982–2013, with a high anomaly of 0.43–0.67 PgC yr−1 in 2011 relative to this period associated with wet conditions following a prolonged drought. The ranges are due to the effect on calculated NEP anomaly of parameter equifinality, which we find to be dominated by the effect of parameter equifinality in heterotrophic respiration rather than NPP.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-07-18
    Description: The isotopic composition of carbon (Δ14C and δ13C) in atmospheric CO2 and in oceanic and terrestrial carbon reservoirs is influenced by anthropogenic emissions and by natural carbon exchanges, which can respond to and drive changes in climate. Simulations of 14C and 13C in the ocean and terrestrial components of Earth System Models (ESMs) present opportunities for model evaluation and for investigation of carbon cycling, including anthropogenic CO2 emissions and uptake. The use of carbon isotopes in novel evaluation of the ESMs' component ocean and terrestrial biosphere models and in new analyses of historical changes may improve predictions of future changes in the carbon cycle and climate system. We compile existing data to produce records of Δ14C and δ13C in atmospheric CO2 for the historical period 1850–2015. The primary motivation for this compilation is to provide the atmospheric boundary condition for historical simulations in the Coupled Model Intercomparison Project 6 (CMIP6) for models simulating carbon isotopes in their ocean or terrestrial biosphere models. The data may also be useful for other carbon cycle modelling activities.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-12-22
    Description: The Community Atmosphere-Biosphere Land Exchange model (CABLE) is a land surface model (LSM) that can be applied stand-alone, as well as providing for land surface-atmosphere exchange within the Australian Community Climate and Earth System Simulator (ACCESS). We describe critical new developments that extend the applicability of CABLE for regional and global carbon-climate simulations, accounting for vegetation response to biophysical and anthropogenic forcings. A land-use and land-cover change module, driven by gross land-use transitions and wood harvest area was implemented, tailored to the needs of the Coupled Model Intercomparison Project-6 (CMIP6). Novel aspects include the treatment of secondary woody vegetation, which benefits from a tight coupling between the land-use module and the Population Orders Physiology (POP) module for woody demography and disturbance-mediated landscape heterogeneity. Land-use transitions and harvest associated with secondary forest tiles modify the annually-resolved patch age distribution within secondary-vegetated tiles, in turn affecting biomass accumulation and turnover rates and hence the magnitude of the secondary forest sink. Additionally, we implemented a novel approach to constrain modelled GPP consistent with the Co-ordination Hypothesis, predicted by evolutionary theory, which suggests that electron transport and Rubisco-limited rates adjust seasonally and across biomes to be co-limiting. We show that the default prior assumption – common to CABLE and other LSMs – of a fixed ratio of electron transport to carboxylation capacity at standard temperature (Jmax,0/Vcmax,0) is at odds with this hypothesis, and implement an alternative algorithm for dynamic optimisation of this ratio, such that co-ordination is achieved as an outcome of fitness maximisation. Results have significant implications the magnitude of the simulated CO2 fertilisation effect on photosynthesis in comparison to alternative estimates and observational proxies. These new developments convert CABLE to a state-of-the-art terrestrial biosphere model for use within an Earth System Model, and in stand-alone applications to attribute trends and variability in the terrestrial carbon cycle to regions, processes and drivers. Model evaluation shows that the new model version satisfies several key observational constraints, including (i) trend and interannual variations in the global land carbon sink, including sensitivities of interannual variations to global precipitation and temperature anomalies; (ii) centennial trends in global GPP; (iii) co-ordination of Rubisco-limited and electron transport-limited photosynthesis; (iv) spatial distributions of global ET, GPP, biomass and soil carbon; and (v) age-dependent rates of biomass accumulation in boreal, temperate and tropical secondary forests. CABLE simulations agree with recent independent assessments of the global land-atmosphere flux partition that use a combination of atmospheric inversions and bottom-up constraints. In particular there is agreement that the strong CO2-driven sink in the tropics is largely cancelled by net deforestation and forest degradation emissions, leaving the Northern Hemisphere (NH) extra-tropics as the dominant contributor to the net land sink.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-05-31
    Description: Atmospheric greenhouse gas (GHG) concentrations are at unprecedented, record-high levels compared to the last 800 000 years. Those elevated GHG concentrations warm the planet and – partially offset by net cooling effects by aerosols – are largely responsible for the observed warming over the past 150 years. An accurate representation of GHG concentrations is hence important to understand and model recent climate change. So far, community efforts to create composite datasets of GHG concentrations with seasonal and latitudinal information have focused on marine boundary layer conditions and recent trends since the 1980s. Here, we provide consolidated datasets of historical atmospheric concentrations (mole fractions) of 43 GHGs to be used in the Climate Model Intercomparison Project – Phase 6 (CMIP6) experiments. The presented datasets are based on AGAGE and NOAA networks, firn and ice core data, and archived air data, and a large set of published studies. In contrast to previous intercomparisons, the new datasets are latitudinally resolved and include seasonality. We focus on the period 1850–2014 for historical CMIP6 runs, but data are also provided for the last 2000 years. We provide consolidated datasets in various spatiotemporal resolutions for carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O), as well as 40 other GHGs, namely 17 ozone-depleting substances, 11 hydrofluorocarbons (HFCs), 9 perfluorocarbons (PFCs), sulfur hexafluoride (SF6), nitrogen trifluoride (NF3) and sulfuryl fluoride (SO2F2). In addition, we provide three equivalence species that aggregate concentrations of GHGs other than CO2, CH4 and N2O, weighted by their radiative forcing efficiencies. For the year 1850, which is used for pre-industrial control runs, we estimate annual global-mean surface concentrations of CO2 at 284.3 ppm, CH4 at 808.2 ppb and N2O at 273.0 ppb. The data are available at https://esgf-node.llnl.gov/search/input4mips/ and http://www.climatecollege.unimelb.edu.au/cmip6. While the minimum CMIP6 recommendation is to use the global- and annual-mean time series, modelling groups can also choose our monthly and latitudinally resolved concentrations, which imply a stronger radiative forcing in the Northern Hemisphere winter (due to the latitudinal gradient and seasonality).
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-12-05
    Description: The isotopic composition of carbon (Δ14C and δ13C) in atmospheric CO2 and in oceanic and terrestrial carbon reservoirs is influenced by anthropogenic emissions and by natural carbon exchanges, which can respond to and drive changes in climate. Simulations of 14C and 13C in the ocean and terrestrial components of Earth system models (ESMs) present opportunities for model evaluation and for investigation of carbon cycling, including anthropogenic CO2 emissions and uptake. The use of carbon isotopes in novel evaluation of the ESMs' component ocean and terrestrial biosphere models and in new analyses of historical changes may improve predictions of future changes in the carbon cycle and climate system. We compile existing data to produce records of Δ14C and δ13C in atmospheric CO2 for the historical period 1850–2015. The primary motivation for this compilation is to provide the atmospheric boundary condition for historical simulations in the Coupled Model Intercomparison Project 6 (CMIP6) for models simulating carbon isotopes in the ocean or terrestrial biosphere. The data may also be useful for other carbon cycle modelling activities.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-06-06
    Description: Perfluorocarbons (PFCs) are very potent and long-lived greenhouse gases in the atmosphere, released predominantly during aluminium production and semiconductor manufacture. They have been targeted for emission controls under the United Nations Framework Convention on Climate Change. Here we present the first continuous records of the atmospheric abundance and global emissions of CF4 (PFC-14), C2F6 (PFC-116) and C3F8 (PFC-218) from 1900 to 2014. The records are derived from high precision measurements of PFCs in air extracted from polar firn or ice at six sites (DE08, DE08-2, DSSW20K, EDML, NEEM and South Pole) and air archive tanks and atmospheric air sampled from both hemispheres. We take proper account of the age characteristics of the firn and ice core air samples and demonstrate excellent consistency between the ice core, firn and atmospheric measurements. In addition to an inversion for global emissions from 1900 to 2014, we also formulate the inversion to directly infer emission factors for PFC emissions due to aluminium production prior to the 1980s. We show that the late-Holocene pre-industrial level was 34.05 ± 0.33 ppt for CF4, and below detection limits of 0.002 ppt and 0.01 ppt for C2F6 and C3F8, respectively. We find a significant peak in CF4 and C2F6 emissions around 1940, most likely due to the high demand for aluminium during World War II, for example for construction of aircraft. The PFC emission factors for aluminium production in the early twentieth century were significantly higher than today, but have decreased since then due to improvements and better control of the smelting process. We see a temporary reduction of around 15 % in CF4 emissions in 2009, presumably associated with the impact of the Global Financial Crisis on aluminium and semiconductor production.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...