ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-05-05
    Description: We propose a procedure for uncertainty quantification in Probabilistic Tsunami Hazard Analysis (PTHA), with a special emphasis on the uncertainty related to statistical modelling of the earthquake source in Seismic PTHA (SPTHA), and on the separate treatment of subduction and crustal earthquakes (treated as background seismicity). An event tree approach and ensemble modelling are used in spite of more classical approaches, such as the hazard integral and the logic tree. This procedure consists of four steps: (1) exploration of aleatory uncertainty through an event tree, with alternative implementations for exploring epistemic uncertainty; (2) numerical computation of tsunami generation and propagation up to a given offshore isobath; (3) (optional) site-specific quantification of inundation; (4) simultaneous quantification of aleatory and epistemic uncertainty through ensemble modelling. The proposed procedure is general and independent of the kind of tsunami source considered; however, we implement step 1, the event tree, specifically for SPTHA, focusing on seismic source uncertainty. To exemplify the procedure, we develop a case study considering seismic sources in the Ionian Sea (central-eastern Mediterranean Sea), using the coasts of Southern Italy as a target zone. The results show that an efficient and complete quantification of all the uncertainties is feasible even when treating a large number of potential sources and a large set of alternative model formulations. We also find that (i) treating separately subduction and background (crustal) earthquakes allows for optimal use of available information and for avoiding significant biases; (ii) both subduction interface and crustal faults contribute to the SPTHA, with different proportions that depend on source-target position and tsunami intensity; (iii) the proposed framework allows sensitivity and deaggregation analyses, demonstrating the applicability of the method for operational assessments.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-03-23
    Description: The ground-motion median and standard deviation of empirical ground-motion prediction equations (GMPEs) are usually poorly constrained in the near-source region due to the general lack of strong-motion records. Here we explore the use of a deterministic–stochastic simulation technique, specifically tailored to reproduce directivity effects, to evaluate the expected ground motion and its variability at a near-source site, and seek a strategy to overcome the known GMPEs limitations. To this end, we simulated a large number of equally likely scenario events for three earthquake magnitudes ( M w  7.0, 6.0, and 5.0) and various source-to-site distances. The variability of the explored synthetic ground motion is heteroscedastic, with smaller values for larger earthquakes. The standard deviation is comparable with empirical estimates for smaller events and reduces by 30%–40% for stronger earthquakes. We then illustrate how to incorporate directivity effects into probabilistic seismic-hazard analysis (PSHA). This goal is pursued by calibrating a set of synthetic GMPEs and reducing their aleatory variability (~50%) by including a predictive directivity term that depends on the apparent stress parameter obtained through the simulation method. Our results show that, for specific source-to-site configurations, the nonergodic PSHA is very sensitive to the additional epistemic uncertainty that may augment the exceedance probabilities when directivity effects are maximized. The proposed approach may represent a suitable way to compute more accurate hazard estimates. Electronic Supplement: Histograms of synthetic peak ground accelerations (PGAs) and peak ground velocities (PGVs).
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
  • 4
  • 5
    Publication Date: 2020-10-22
    Description: Exploring different degrees of complexities in the geometry of seismic tsunami sources is a key point to optimize Probabilistc Tsunami Hazard Analyis (PTHA), as fault geometry can have an impact on the generated tsunami. In this regard, one major difficulty is represented by the potentially tsunamigenic offshore faults that are generally poorly constrained and consequently the geometry is often oversimplified as a planar fault. We present compared scenarios of PTHA for ruptures located in the Calabrian subduction interface using different source models. The Calabrian subduction, located in the Mediterranean Sea, has occasionally be blamed to have generated some past large earthquakes and tsunamis, despite it shows no sign of significant seismic activity on the shallow portion of the interface. Significant in-slab seismicity is recorded below 40 km depth and a rate of 1-5 mm/yr characterize the convergence between the two plates involved, Africa and Europe. A 3D model of the subduction interface was obtained from the original interpretation of a grid of ca. 60 (9000 km length) seismic reflection profiles (Spectrum – INGV collaborative framework CA-60) coupled with the detailed analysis of the seismicity, providing a highly detailed 3D surface geometry for the first 100 km depth. This model includes both the first order information on the curvature and changes in strike and an accurate reconstruction of the 3D subduction interface, and can be scaled to different levels of detail. We compare simplified planar vs 3D models with different degrees of geometrical complexities in order to estimate the effect of the source geometry on the tsunami generation and propagation pattern.
    Description: TSUMAPS-NEAM Project, co-financed by the European Union Civil Protection Mechanism, Agreement Number: ECHO/SUB/2015/718568/PREV26; Italian Flagship Project RITMARE
    Description: Unpublished
    Description: Wien
    Description: 5T. Modelli di pericolosità sismica e da maremoto
    Keywords: Tsunami ; PTHA ; Seismogenic source ; 04.06. Seismology ; 05.08. Risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: Durante il IV semestre di attività, l’Unità di Ricerca “Analisi delle sorgenti sismogenetiche” (OR2), ha ampliato ulteriormente il numero di scenari di scuotimento prodotti per il sito dimostratore di Cosenza (vedi precedente rapporto tecnico), eseguendo nuove modellazioni a sorgente estesa anche per la classe di magnitudo 5.0. Al fine di validare l’affidabilità degli scenari di scuotimento si eseguirà il confronto tra le distribuzioni statistiche dei parametri di strong motion simulati (e.g. PGA e PGV) con quelle predette dalle più recenti GMPEs europee (Bindi et al., 2014). Il range di validità di suddette relazioni empiriche predittive del moto del suolo è compatibile, in termini di magnitudo e distanza, con quello degli eventi di scenario modellati per il sito di Cosenza. Per l’analisi di dettaglio dei risultati acquisiti si rimanda al rapporto tecnico del prossimo semestre di attività.
    Description: PON 01/02710 MASSIMO - Monitoraggio in Area Sismica di SIstemi MOnumentali
    Description: Unpublished
    Description: 2T. Tettonica attiva
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: reserved
    Keywords: Calabria ; Faglie sismogeniche ; Scenari di scuotimento ; Sismogrammi sintetici ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: Durante il V semestre di attività, l’Unità di Ricerca “Analisi delle sorgenti sismogenetiche” (OR2), ha prodotto gli scenari di scuotimento per il sito dimostratore di Reggio Calabria, eseguendo n. 31 modellazioni a sorgente estesa per le classi di Mw 5.0, 6.0 e 7.0 e adottando il medesimo work flow proposto per il sito di Cosenza, per la cui descrizione si rimanda al report del III semestre di attività. Nella fase di aggiornamento dei dati geologici in Calabria meridionale è stata di fondamentale importanza la collaborazione con la UR Rilievi Aeromagnetici.
    Description: PON 01/02710 MASSIMO - Monitoraggio in Area Sismica di SIstemi Monumentali
    Description: Unpublished
    Description: 2T. Tettonica attiva
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: reserved
    Keywords: Calabria ; Faglie sismogeniche ; Scenari di scuotimento ; Sismogrammi sintetici ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-05-12
    Description: The accurately reconstructed geometry of the subduction interface is a crucial element for seismic and tsunami hazard studies that require realistic modelling of future earthquake ruptures. The Calabrian Arc is a cornerstone in the Mediterranean plate-tectonics puzzle and understanding its geometry and behavior may strongly contribute to estimating the seismic and tsunami hazard in the region. Besides, it has occasionally be blamed to have generated some past large earthquakes and tsunamis, despite it shows no sign of significant seismic activity on the shallow portion of the interface. In addition, significant in-slab seismicity is recorded below 40 km depth and a rate of 1-5 mm/yr characterize the convergence between the two plates involved, Africa and Europe. An accurate 3D reconstruction of the Calabrian subduction plate interface based on the interpretation of ca. 9000 km of seismic reflection profiles, provided in the collaborative framework between Spectrum and INGV (CA-60), allows us to detail the architecture of the shallow part of the subduction interface (〈20 km). The resulting 3D model images the peculiar features that characterize the Calabrian subduction interface: 1) an external flat at 5-8 km depth located under an accreted Messinian evaporites wedge; 2) a central ramp cutting between 8-14 km depth with high roughness and lateral variations of the dip angle; 3) a deeper flat between 14 and 20 km; 4) the overthrusting over the continental Apulia margin in the northern part; 5) the Subduction Transform Edge Propagator (STEP) fault system guiding the southeastern propagation of the subduction; The deeper part of the subducted slab was reconstructed by analysing the seismicity distribution and the available tomographic data and allows us to highlight the progressive development from north to south of the slab breakoff at 100-150 km depth. The detailed 3D reconstruction allows us to also estimate the rock volume involved in the accretionary wedge building and to compare the geometrical features of the subduction interface with the surficial ongoing processes (i.e. uplift rates) in the Calabrian Arc.
    Description: The Italian Flagship Project RITMARE; the TSUMAPS-NEAM Project, co-financed by the European Union Civil Protection Mechanism, Agreement Number: ECHO/SUB/2015/718568/PREV26; the INGV Centro per la Pericolosità Sismica (CPS, Seismic Hazard Centre); and the project MASSIMO - Cultural Heritage Monitoring in Seismic Area, PON01/02710 - coordinated by INGV and funded by the Italian Ministry of Education, University and Research. Spectrum Geo Inc. provided the CA99, MEM07, and GT08 seismic profiles under the confidentiality agreement CA-60 with INGV;
    Description: Unpublished
    Description: Wien
    Description: 5T. Modelli di pericolosità sismica e da maremoto
    Description: 2TR. Ricostruzione e modellazione della struttura crostale
    Keywords: Subduction ; Calabrian arc ; Subduction interface ; 3D modelling ; Seismic interpretation ; Calabrian arc ; Accretionary wedge
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: Probabilistic tsunami hazard analysis (PTHA) relies on computationally demanding numerical simulations of tsunami generation, propagation, and non-linear inundation on high-resolution topo-bathymetric models. Here we focus on tsunamis generated by co-seismic sea floor dis- placement, that is, on Seismic PTHA (SPTHA). A very large number of tsunami simulations are typically needed to incorporate in SPTHA the full expected variability of seismic sources (the aleatory uncertainty). We propose an approach for reducing their number. To this end, we (i) introduce a simplified event tree to achieve an effective and consistent exploration of the seismic source parameter space; (ii) use the computationally inexpensive linear approximation for tsunami propagation to construct a preliminary SPTHA that calculates the probability of maximum offshore tsunami wave height (H Max) at a given target site; (iii) apply a two-stage filtering procedure to these ‘linear’ SPTHA results, for selecting a reduced set of sources and (iv) calculate ‘non-linear’ probabilistic inundation maps at the target site, using only the selected sources. We find that the selection of the important sources needed for approximating probabilistic inundation maps can be obtained based on the offshore HMax values only. The filtering procedure is semi-automatic and can be easily repeated for any target sites. We describe and test the performances of our approach with a case study in the Mediterranean that considers potential subduction earthquakes on a section of the Hellenic Arc, three target sites on the coast of eastern Sicily and one site on the coast of southern Crete. The comparison between the filtered SPTHA results and those obtained for the full set of sources indicates that our approach allows for a 75–80 per cent reduction of the number of the numerical simulations needed, while preserving the accuracy of probabilistic inundation maps to a reasonable degree.
    Description: Published
    Description: 574-588
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: JCR Journal
    Description: restricted
    Keywords: Tsunami ; Hazard ; Probabilistic ; Subduction ; Mediterranean ; SPTHA ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-12-11
    Description: For any scientist working in seismotectonics, the Calabrian Arc represents the most challenging area of Italy. Lying on top of a subduction zone, it is characterised by a complex geological structure largely inherited from the early stages of the collision between the Africa and Eurasia plates. The current and extremely vigorous seismogenic processes, although generated by a mechanism driven by the subduction, are no longer a direct consequence of plate convergence. About one fourth of the largest Italian earthquakes concentrates in a narrow strip of land (roughly 200x70 km) corresponding to the administrative region of Calabria. The present-day seismicity, both shallow and deep, provides little help in detecting the most insidious seismogenic structures, nor does the available record of GPS-detected strains. In addition to its fierce seismicity, the Calabrian Arc also experiences uplift at rates that are the largest in Italy, thus suggesting that active tectonic processes are faster here than elsewhere in the country. Calabrian earthquakes are strong yet inherently elusive, and even the largest of those that have occurred over the past two centuries do not appear to have caused unambiguous surface faulting. The identified active structures are not sufficient to explain in full the historical seismicity record, suggesting that some of the main seismogenic sources still lie unidentified, for instance in the offshore. As a result, the seismogenic processes of Calabria have been the object of a lively debate at least over the past three decades. In this work we propose to use the current geodynamic framework of the Calabrian Arc as a guidance to resolve the ambiguities that concern the identification of the presumed known seismogenic sources, and to identify those as yet totally unknown. Our proposed scheme is consistent with the location of the largest earthquakes, the recent evolution of the regions affected by seismogenic faulting, and the predictions of current evolutionary models of the crust overlying a W-dipping subduction zone.
    Description: Published
    Description: 365-388
    Description: 4IT. Banche dati
    Description: JCR Journal
    Description: open
    Keywords: Calabrian Arc ; Calabrian earthquakes ; Seismotectonics ; Seismogenic sources ; DISS database ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.03. Geomorphology ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...