ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-01-30
    Description: We derive time-dependent, renewal-model earthquake probabilities for the case in which the date of the last event is completely unknown, and compare these with the time-independent Poisson probabilities that are customarily used as an approximation in this situation. For typical parameter values, the renewal-model probabilities exceed Poisson results by more than 10% when the forecast duration exceeds ~20% of the mean recurrence interval. We also derive probabilities for the case in which the last event is further constrained to have occurred before historical record keeping began (the historic open interval), which can only serve to increase earthquake probabilities for typically applied renewal models. We conclude that accounting for the historic open interval can improve long-term earthquake rupture forecasts for California and elsewhere.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-02-25
    Description: This article reports on a workshop held to explore the potential uses of operational earthquake forecasting (OEF). We discuss the current status of OEF in the United States and elsewhere, the types of products that could be generated, the various potential users and uses of OEF, and the need for carefully crafted communication protocols. Although operationalization challenges remain, there was clear consensus among the stakeholders at the workshop that OEF could be useful.
    Print ISSN: 0895-0695
    Electronic ISSN: 1938-2057
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-08-26
    Description: Probabilistic forecasting of earthquake-producing fault ruptures informs all major decisions aimed at reducing seismic risk and improving earthquake resilience. Earthquake forecasting models rely on two scales of hazard evolution: long-term (decades to centuries) probabilities of fault rupture, constrained by stress renewal statistics, and short-term (hours to years) probabilities of distributed seismicity, constrained by earthquake-clustering statistics. Comprehensive datasets on both hazard scales have been integrated into the Uniform California Earthquake Rupture Forecast, Version 3 (UCERF3). UCERF3 is the first model to provide self-consistent rupture probabilities over forecasting intervals from less than an hour to more than a century, and it is the first capable of evaluating the short-term hazards that result from multievent sequences of complex faulting. This article gives an overview of UCERF3, illustrates the short-term probabilities with aftershock scenarios, and draws some valuable scientific conclusions from the modeling results. In particular, seismic, geologic, and geodetic data, when combined in the UCERF3 framework, reject two types of fault-based models: long-term forecasts constrained to have local Gutenberg–Richter scaling, and short-term forecasts that lack stress relaxation by elastic rebound.
    Print ISSN: 0895-0695
    Electronic ISSN: 1938-2057
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-08-23
    Description: Seismic hazard models are important for society, feeding into building codes and hazard mitigation efforts. These models, however, rest on many uncertain assumptions and are difficult to test observationally because of the long recurrence times of large earthquakes. Physics-based earthquake simulators offer a potentially helpful tool, but they face a vast range of fundamental scientific uncertainties. We compare a physics-based earthquake simulator against the latest seismic hazard model for California. Using only uniform parameters in the simulator, we find strikingly good agreement of the long-term shaking hazard compared with the California model. This ability to replicate statistically based seismic hazard estimates by a physics-based model cross-validates standard methods and provides a new alternative approach needing fewer inputs and assumptions for estimating hazard.
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-06-25
    Description: Probabilistic forecasting models describe the aleatory variability of natural systems as well as our epistemic uncertainty about how the systems work. Testing a model against observations exposes ontological errors in the representation of a system and its uncertainties. We clarify several conceptual issues regarding the testing of probabilistic forecasting models for ontological errors: the ambiguity of the aleatory/epistemic dichotomy, the quantification of uncertainties as degrees of belief, the interplay between Bayesian and frequentist methods, and the scientific pathway for capturing predictability. We show that testability of the ontological null hypothesis derives from an experimental concept, external to the model, that identifies collections of data, observed and not yet observed, that are judged to be exchange- able when conditioned on a set of explanatory variables. These conditional exchangeability judgments specify observations with well-defined frequencies. Any model predicting these behaviors can thus be tested for ontological error by frequentist methods; e.g., using P values. In the forecasting problem, prior predictive model checking, rather than posterior predictive checking, is desir- able because it provides more severe tests. We illustrate experi- mental concepts using examples from probabilistic seismic hazard analysis. Severe testing of a model under an appropriate set of experimental concepts is the key to model validation, in which we seek to know whether a model replicates the data-generating pro- cess well enough to be sufficiently reliable for some useful pur- pose, such as long-term seismic forecasting. Pessimistic views of system predictability fail to recognize the power of this method- ology in separating predictable behaviors from those that are not.
    Description: Published
    Description: 11973 – 11978
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: JCR Journal
    Description: reserved
    Keywords: Bayesian statistics ; testing hazard models ; 05. General::05.01. Computational geophysics::05.01.04. Statistical analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-06-25
    Description: We cannot yet predict large earthquakes in the short term with much reliability and skill, but the strong clustering exhibited in seismic sequences tells us that earthquake probabilities are not constant in time; they generally rise and fall over periods of days to years in correlation with nearby seismic activity. Opera- tional earthquake forecasting (OEF) is the dissemination of authoritative information about these time-dependent proba- bilities to help communities prepare for potentially destructive earthquakes. The goal of OEF is to inform the decisions that people and organizations must continually make to mitigate seismic risk and prepare for potentially destructive earthquakes on time scales from days to decades. To fulfill this role, OEF must provide a complete description of the seismic hazard—ground-motion exceedance probabilities as well as short-term rupture probabilities—in concert with the long-term forecasts of probabilistic seismic-hazard analysis (PSHA).
    Description: Published
    Description: 955-959
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: JCR Journal
    Description: reserved
    Keywords: Operational earthquake forecasting ; seismic preparedness ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-10-15
    Description: A second-order Born approximation is used to formulate a self-consistent theory for the effective elastic parameters of stochastic media with ellipsoidal distributions of small-scale heterogeneity. The covariance of the stiffness tensor is represented as the product of a one-point tensor variance and a two-point scalar correlation function with ellipsoidal symmetry, which separates the statistical properties of the local anisotropy from those of the geometric anisotropy. The spatial variations can then be rescaled to an isotropic distribution by a simple metric transformation; the spherical average of the strain Green's function in the transformed space reduces to a constant Kneer tensor, and the second-order corrections to the effective elastic parameters are given by the contraction of the rescaled Kneer tensor against the single-point variance of the stiffness tensor. Explicit results are derived for stochastic models in which the heterogeneity is transversely isotropic and its second moments are characterized by a horizontal-to-vertical aspect ratio . If medium is locally isotropic, the expressions for the anisotropic effective moduli reduce in the limit -〉 to Backus's second-order expressions for a 1-D stochastic laminate. Comparisons with the exact Backus theory show that the second-order approximation predicts the effective anisotropy for non-Gaussian media fairly well for relative rms fluctuations in the moduli smaller than about 30 per cent. A locally anisotropic model is formulated in which the local elastic properties have hexagonal symmetry, guided by a Gaussian random vector field that is transversely isotropic and specified by a horizontal-to-vertical orientation ratio . The self-consistent theory provides closed-form expressions for the dependence of the effective moduli on 0 〈 〈 and 0 〈 〈 . The effective-medium parametrizations described here appear to be suitable for incorporation into tomographic modelling.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-04-01
    Description: The 2014 Working Group on California Earthquake Probabilities (WGCEP 2014) presents time-dependent earthquake probabilities for the third Uniform California Earthquake Rupture Forecast (UCERF3). Building on the UCERF3 time-independent model published previously, renewal models are utilized to represent elastic-rebound-implied probabilities. A new methodology has been developed that solves applicability issues in the previous approach for unsegmented models. The new methodology also supports magnitude-dependent aperiodicity and accounts for the historic open interval on faults that lack a date-of-last-event constraint. Epistemic uncertainties are represented with a logic tree, producing 5760 different forecasts. Results for a variety of evaluation metrics are presented, including logic-tree sensitivity analyses and comparisons to the previous model (UCERF2). For 30 yr M ≥6.7 probabilities, the most significant changes from UCERF2 are a threefold increase on the Calaveras fault and a threefold decrease on the San Jacinto fault. Such changes are due mostly to differences in the time-independent models (e.g., fault-slip rates), with relaxation of segmentation and inclusion of multifault ruptures being particularly influential. In fact, some UCERF2 faults were simply too long to produce M  6.7 size events given the segmentation assumptions in that study. Probability model differences are also influential, with the implied gains (relative to a Poisson model) being generally higher in UCERF3. Accounting for the historic open interval is one reason. Another is an effective 27% increase in the total elastic-rebound-model weight. The exact factors influencing differences between UCERF2 and UCERF3, as well as the relative importance of logic-tree branches, vary throughout the region and depend on the evaluation metric of interest. For example, M ≥6.7 probabilities may not be a good proxy for other hazard or loss measures. This sensitivity, coupled with the approximate nature of the model and known limitations, means the applicability of UCERF3 should be evaluated on a case-by-case basis.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-01-09
    Print ISSN: 0895-0695
    Electronic ISSN: 1938-2057
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-01-09
    Print ISSN: 0895-0695
    Electronic ISSN: 1938-2057
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...