ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (2)
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2015-12-04
    Description: A 182 m ice core was recovered from a borehole drilled into bedrock on the western plateau of Mt. Elbrus (43°20´53.9'' N, 42°25´36.0'' E; 5115 m a.s.l.) in the Caucasus, Russia, in 2009. This is the first ice core in the region that represents a paleoclimate record that is practically undisturbed by seasonal melting. Relatively high snow accumulation rates at the drilling site enabled the analysis of the intraseasonal variability in climate proxies. Borehole temperatures ranged from −17 °C at 10 m depth to −2.4 °C at 182 m. A detailed radio-echo sounding survey showed that the glacier thickness ranged from 45 m near the marginal zone of the plateau up to 255 m at the glacier center. The ice core has been analyzed for stable isotopes (δ18O and δD), major ions (K+, Na+, Ca2+, Mg2+, NH4+, SO42-, NO3-, Cl-, F-), succinic acid (HOOCCH2COOH), and tritium content. The mean annual net accumulation rate of 1455 mm w.e. for the last 140 years was estimated from distinct annual oscillations of δ18O, δD, succinic acid, and NH4+. Annual layer counting also helped date the ice core, agreeing with the absolute markers of the tritium 1963 bomb horizon located at the core depth of 50.7 m w.e. and the sulfate peak of the Katmai eruption (1912) at 87.7 m w.e. According to mathematical modeling results, the ice age at the maximum glacier depth is predicted to be ~ 660 years BP. The 2009 borehole is located downstream from this point, resulting in an estimated basal ice age of less than 350–400 years BP at the drilling site. The glaciological and initial chemical analyses from the Elbrus ice core help reconstruct the atmospheric history of the European region.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-07-16
    Description: A 182 m ice core has been recovered from a borehole drilled through the glacier to the bedrock at the Western Plateau of Mt Elbrus (43°20'53.9'' N, 42°25'36.0'' E; 5115 m a.s.l.), the Caucasus, Russia, in 2009. This is the first ice core in the region which represents a paleoclimate record practically undisturbed by seasonal melting. Relatively high snow accumulation rate at the drilling site enabled analysis of the intra-seasonal climate proxies' variability. Borehole temperatures ranged from −17 °C at 10 m depth and −2.4 °C at 182 m. A detailed radio-echo sounding survey showed that the glacier thickness ranged from 45 m near marginal zone of the plateau up to 255 m at the central part. The ice core has been analyzed for stable isotopes (δ18O and δ D), major ions (K+, Na+, Ca2+, Mg2+, NH4+, SO42-, NO3-, Cl-, F-), succinic acid (HOOCCH2COOH), and tritium content. The mean annual net accumulation rate was estimated from distinct annual oscillations of δ18O, δ D, succinic acid, and NH4+ and is 1455 mm w.e. for the last 140 years. Using annual layer counting also for the dating of the ice core, a good agreement with the absolute markers of the tritium 1963 bomb test time horizon located at the core depth of 50.7 m w.e. and the sulfate peak of the Katmai eruption (1912) at 87.7 m w.e. was obtained. According to mathematical modeling results, the bottom ice age at the maximal glacier depth is predicted to be about 660 years BP. As the 2009 borehole was situated downstream of this point, the estimated bottom ice age of the drilling site does not exceed 350–400 years BP. Taking into account the information that we have acquired on the Western Plateau Elbrus glacier and first results of the ice core analysis, these data can be used to reconstruct the atmospheric history of the European region.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...