ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (154)
Collection
Keywords
Language
Years
Year
  • 1
    Publication Date: 2016-10-10
    Description: The Paleocene–Eocene Thermal Maximum (PETM) (∼56 Ma) was a ∼170,000-y (∼170-kyr) period of global warming associated with rapid and massive injections of 13C-depleted carbon into the ocean–atmosphere system, reflected in sedimentary components as a negative carbon isotope excursion (CIE). Carbon cycle modeling has indicated that the shape and magnitude of this CIE are generally explained by a large and rapid initial pulse, followed by ∼50 kyr of 13C-depleted carbon injection. Suggested sources include submarine methane hydrates, terrigenous organic matter, and thermogenic methane and CO2 from hydrothermal vent complexes. Here, we test for the contribution of carbon release associated with volcanic intrusions in the North Atlantic Igneous Province. We use dinoflagellate cyst and stable carbon isotope stratigraphy to date the active phase of a hydrothermal vent system and find it to postdate massive carbon release at the onset of the PETM. Crucially, however, it correlates to the period within the PETM of longer-term 13C-depleted carbon release. This finding represents actual proof of PETM carbon release from a particular reservoir. Based on carbon cycle box model [i.e., Long-Term Ocean–Atmosphere–Sediment Carbon Cycle Reservoir (LOSCAR) model] experiments, we show that 4–12 pulses of carbon input from vent systems over 60 kyr with a total mass of 1,500 Pg of C, consistent with the vent literature, match the shape of the CIE and pattern of deep ocean carbonate dissolution as recorded in sediment records. We therefore conclude that CH4 from the Norwegian Sea vent complexes was likely the main source of carbon during the PETM, following its dramatic onset.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-07-22
    Description: Abrupt and short-lived "impact winter" conditions have commonly been implicated as the main mechanism leading to the mass extinction at the Cretaceous-Paleogene (K-Pg) boundary (ca. 66 Ma), marking the end of the reign of the non-avian dinosaurs. However, so far only limited evidence has been available for such a climatic perturbation. Here we perform high-resolution TEX 86 organic paleothermometry on three shallow cores from the New Jersey paleoshelf, (northeastern USA) to assess the impact-provoked climatic perturbations immediately following the K-Pg impact and to place these short-term events in the context of long-term climate evolution. We provide evidence of impact-provoked, severe climatic cooling immediately following the K-Pg impact. This so-called "impact winter" occurred superimposed on a long-term cooling trend that followed a warm phase in the latest Cretaceous.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-04-10
    Description: In order to enable anticipation and proactive adaptation, local decision makers increasingly seek detailed foresight about regional and local impacts of climate change. To this end, the Netherlands Models and Data-Centre implemented a pilot chain of sequentially linked models to project local climate impacts on hydrology, agriculture and nature under different national climate scenarios for a small region in the east of the Netherlands named Baakse Beek. The chain of models sequentially linked in that pilot includes a (future) weather generator and models of respectively subsurface hydrogeology, ground water stocks and flows, soil chemistry, vegetation development, crop yield and nature quality. These models typically have mismatching time step sizes and grid cell sizes. The linking of these models unavoidably involves the making of model assumptions that can hardly be validated, such as those needed to bridge the mismatches in spatial and temporal scales. Here we present and app...
    Print ISSN: 1748-9318
    Electronic ISSN: 1748-9326
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-12-13
    Description: The Oligocene – Miocene Transition (OMT) (~23 Ma) is interpreted as a transient global cooling event, associated with a large-scale Antarctic ice sheet expansion. Here, we present a 2.23 Myr long high-resolution (~3 kyr) benthic foraminiferal oxygen and carbon isotope (δ 18 O and δ 13 C) record from Integrated Ocean Drilling Program Site U1334 (eastern equatorial Pacific Ocean), covering the interval from 21.91 to 24.14 Ma. To date, five other high-resolution benthic foraminiferal stable isotope stratigraphies across this time-interval have been published, showing a ~1‰ increase in benthic foraminiferal δ 18 O across the OMT. However, these records are still few and spatially limited and no clear understanding exists of the global versus local imprints. We show that trends and the amplitudes of change are similar at Site U1334 as in other high-resolution stable isotope records, suggesting that these represent global deep-water signals. We create a benthic foraminiferal stable isotope stack across the OMT by combining Site U1334 with records from ODP Sites 926, 929, 1090, 1264 and 1218 to best approximate the global signal. We find that isotopic gradients between sites indicate inter- and intra-basinal variability in deep-water masses, and in particular note an offset between the equatorial Atlantic and the equatorial Pacific, suggesting that a distinct temperature gradient was present during the OMT between these deep water masses at low latitudes. A convergence in the δ 18 O values between infaunal and epifaunal species occurs between 22.8 and 23.2 Ma, associated with the maximum δ 18 O excursion at the OMT, suggesting climatic changes associated with the OMT had an effect on interspecies offsets of benthic foraminifera. Our data indicates a maximum glacioeustatic sea level change of ~50 m across the OMT.
    Print ISSN: 0883-8305
    Electronic ISSN: 1944-9186
    Topics: Geosciences
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019
    Description: Childhood obesity is of increasing concern in many parts of Africa. We conducted a systematic search and review of published literature on behavioural childhood obesity prevention interventions. A literature search identified peer-reviewed literature from seven databases, and unindexed African journals, including experimental studies targeting children age 2–18 years in African countries, published in any language since 1990. All experimental designs were eligible; outcomes of interest were both behavioural (physical activity, dietary behaviours) and anthropometric (weight, body mass index, body composition). We also searched for process evaluations or other implementation observations. Methodological quality was assessed; evidence was synthesised narratively as a meta-analysis was not possible. Seventeen articles describing 14 interventions in three countries (South Africa, Tunisia and Uganda) were included. Effect scores indicated no overall effect on dietary behaviours, with some beneficial effects on physical activity and anthropometric outcomes. The quality of evidence was predominantly weak. We identified barriers and facilitators to successful interventions, and these were largely resource-related. Our systematic review highlights research gaps in targeting alternative settings to schools, and younger age groups, and a need for more rigorous designs for evaluating effectiveness. We also recommend process evaluations being used more widely.
    Print ISSN: 1661-7827
    Electronic ISSN: 1660-4601
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Medicine
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019
    Description: Abstract During the last glacial period, climate conditions in the North Atlantic region were determined by the alternation of relatively warm interstadials and relatively cool stadials, with superimposed rapid warming (Dansgaard‐Oeschger) and cooling (Heinrich) events. So far little is known about the impact of these rapid climate shifts on the seasonal variations in sea surface temperature (SST) within the North Atlantic region. Here, we present a high‐resolution seasonal SST record for the past 152 kyrs derived from Integrated Ocean Drilling Program “Shackleton” Site U1385, offshore Portugal. Assemblage counts of dinoflagellates cysts (dinocysts) in combination with a modern analogue technique (MAT) and regression analyses were used for the reconstructions. We compare our records with previously published SST records from the same location obtained from the application of MAT on planktonic foraminifera. Our dinocyst‐based reconstructions confirm the impression of the Greenland stadials and interstadials offshore the Portuguese margin and indicate increased seasonal contrast of temperature during the cold periods of the glacial cycle (average 9.0°C, maximum 12.2°C) with respect to present‐day (5.1°C), due to strong winter cooling by up to 8.3°C. Our seasonal temperature reconstructions are in line with previously published data, which showed increased seasonality due to strong winter cooling during the Younger Dryas and the Last Glacial Maximum over the European continent and North Atlantic region. In addition, we show that over longer time scales, increased seasonal contrasts of temperature remained characteristic of the colder phases of the glacial cycle.
    Print ISSN: 0883-8305
    Electronic ISSN: 2572-4525
    Topics: Geosciences
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
  • 8
    Publication Date: 2019
    Description: Abstract We present a multi‐proxy (foraminifer Mg/Ca, δ18O, ∆47, and Sr/Ca, and biomarker TEX86H, MATmrs) low‐resolution paleotemperature record based on seven sets of high‐resolution time series from the late Cretaceous to Miocene from the Ocean Drilling Program Bass River site, New Jersey Shelf, North Atlantic. Along with insight into long‐term climate evolution, this allows testing for internal consistency between proxies. The bottom water temperatures (BWT) reconstructed using benthic δ18O and Mg/Ca‐values show good agreement in recorded trends with the TEX86H sea surface and shallow subsurface temperature record, and with the stacked global benthic oxygen isotope record. The Mg/Ca‐based BWTs are higher than the δ18O‐based BWTs, likely due to uncertainty in the assumptions associated with the Mg/Ca calibration to sea water Mg/Ca. Absolute δ18O‐based BWT reconstructions are supported by clumped isotope paleothermometry. The agreement in main trends of the independent paleotemperature proxies indicates that the underlying assumed mechanisms for the different proxy relations to temperature stayed largely intact back to at least 90 Ma. Consistent differences in absolute temperature values highlight however, that a better understanding of the individual proxies is required in order to achieve accurate absolute temperature reconstructions.
    Print ISSN: 0883-8305
    Electronic ISSN: 2572-4525
    Topics: Geosciences
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018
    Description: Unmanned Aerial Vehicle (UAV) systems, sensors, and photogrammetric processing techniques have enabled timely and highly detailed three-dimensional surface reconstructions at a scale that bridges the gap between conventional remote-sensing and field-scale observations. In this work 29 rotary and fixed-wing UAV surveys were conducted during multiple field campaigns, totaling 47 flights and over 14.3 km2, to document permafrost thaw subsidence impacts on or close to road infrastructure in the Northwest Territories, Canada. This paper provides four case studies: (1) terrain models and orthomosaic time series revealed the morphology and daily to annual dynamics of thaw-driven mass wasting phenomenon (retrogressive thaw slumps; RTS). Scar zone cut volume estimates ranged between 3.2 × 103 and 5.9 × 106 m3. The annual net erosion of RTS surveyed ranged between 0.35 × 103 and 0.39 × 106 m3. The largest RTS produced a long debris tongue with an estimated volume of 1.9 × 106 m3. Downslope transport of scar zone and embankment fill materials was visualized using flow vectors, while thermal imaging revealed areas of exposed ground ice and mobile lobes of saturated, thawed materials. (2) Stratigraphic models were developed for RTS headwalls, delineating ground-ice bodies and stratigraphic unconformities. (3) In poorly drained areas along road embankments, UAV surveys detected seasonal terrain uplift and settlement of up to 0.5 m (〉1700 m2 in extent) as a result of injection ice development. (4) Time series of terrain models highlighted the thaw-driven evolution of a borrow pit (6.4 × 105 m3 cut volume) constructed in permafrost terrain, whereby fluvial and thaw-driven sediment transfer (1.1 and 3.9 × 103 m3 a−1 respectively) was observed and whereby annual slope profile reconfiguration was monitored to gain management insights concerning site stabilization. Elevation model vertical accuracies were also assessed as part of the case studies and ranged between 0.02 and 0.13 m Root Mean Square Error, whereby photogrammetric models processed with Post-processed Kinematic image solutions achieved similar accuracies without ground control points over much larger and complex areas than previously reported. The high resolution of UAV surveys, and the capacity to derive quantitative time series provides novel insights into permafrost processes that are otherwise challenging to study. The timely emergence of these tools bridges field-based research and applied studies with broad-scale remote-sensing approaches during a period when climate change is transforming permafrost environments.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-10-26
    Description: The Paleocene–Eocene Thermal Maximum (PETM) (∼56 Ma) was a ∼170,000-y (∼170-kyr) period of global warming associated with rapid and massive injections of 13C-depleted carbon into the ocean–atmosphere system, reflected in sedimentary components as a negative carbon isotope excursion (CIE). Carbon cycle modeling has indicated that the shape and magnitude of...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...