ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (2)
Collection
Years
Year
  • 1
    Publication Date: 2015-04-25
    Description: Gene duplication is a major driving force in genome evolution. Here, we explore the nature and origin of the POT1 gene duplication in Arabidopsis thaliana . Protection of Telomeres (POT1) is a conserved multifunctional protein that modulates telomerase activity and its engagement with telomeres. Arabidopsis thaliana encodes two divergent POT1 paralogs termed AtPOT1a and AtPOT1b. AtPOT1a positively regulates telomerase activity, whereas AtPOT1b is proposed to negatively regulate telomerase and promote chromosome end protection. Phylogenetic analysis uncovered two independent POT1 duplication events in the plant kingdom, including one at the base of Brassicaceae. Tests for positive selection implemented in PAML revealed that the Brassicaceae POT1a lineage experienced positive selection postduplication and identified three amino acid residues with signatures of positive selection. A sensitive and quantitative genetic complementation assay was developed to assess POT1a function in A. thaliana . The assay showed that AtPOT1a is functionally distinct from single-copy POT1 genes in other plants. Moreover, for two of the sites with a strong signature of positive selection, substitutions that swap the amino acids in AtPOT1a for residues found in AtPOT1b dramatically compromised AtPOT1a function in vivo. In vitro-binding studies demonstrated that all three sites under positive selection specifically enhance the AtPOT1a interaction with CTC1, a core component of the highly conserved CST (CTC1/STN1/TEN1) telomere protein complex. Our results reveal a molecular mechanism for the role of these positively selected sites in AtPOT1a. The data also provide an important empirical example to refine theories of duplicate gene retention, as the outcome of positive selection here appears to be reinforcement of an ancestral function, rather than neofunctionalization. We propose that this outcome may not be unusual when the duplicated protein is a component of a multisubunit complex whose function is in part specified by other members.
    Print ISSN: 0737-4038
    Electronic ISSN: 1537-1719
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-12-01
    Description: Protection of telomeres (POT1) binds chromosome ends, recognizing single-strand telomeric DNA via two oligonucleotide/oligosaccharide binding folds (OB-folds). The Arabidopsis thaliana POT1a and POT1b paralogs are atypical: they do not exhibit telomeric DNA binding, and they have opposing roles in regulating telomerase activity. AtPOT1a stimulates repeat addition processivity of the canonical telomerase enzyme, while AtPOT1b interacts with a regulatory lncRNA that represses telomerase activity. Here, we show that OB1 of POT1a, but not POT1b, has an intrinsic affinity for telomeric DNA. DNA binding was dependent upon a highly conserved Phe residue (F65) that in human POT1 directly contacts telomeric DNA. F65A mutation of POT1a OB1 abolished DNA binding and diminished telomerase repeat addition processivity. Conversely, AtPOT1b and other POT1b homologs from Brassicaceae and its sister family, Cleomaceae, naturally bear a non-aromatic amino acid at this position. By swapping Val (V63) with Phe, AtPOT1b OB1 gained the capacity to bind telomeric DNA and to stimulate telomerase repeat addition processivity. We conclude that, in the context of DNA binding, variation at a single amino acid position promotes divergence of the AtPOT1b paralog from the ancestral POT1 protein.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...