ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-09-11
    Print ISSN: 0895-0695
    Electronic ISSN: 1938-2057
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-02-15
    Description: The first stage of the trial in L'Aquila (Italy) ended with a conviction of seven experts, convened by the head of Civil Protection on 31 March 2009, for multiple manslaughter and serious injuries. They were sentenced to six years in jail, perpetual interdiction from public office and a fine of several million euros to be paid to the victims of the earthquake of 6 April 2009 (moment magnitude 6.3) for having caused, by their negligent conduct, the death of 29 persons and the injury of several others. The verdict had a tremendous impact on the scientific community and on the way scientists deliver their expert opinions to decision makers and society. This paper analyses the scientific argumentations reported in the Verdict Motivations, where scientific data and results were largely debated and misused to demonstrate that they should have been considered as a tool to predict an impending large earthquake. Moreover, we show that the supposed message of reassurance was not generated at the experts’ meeting or by the official Istituto Nazionale di Geofisica e Vulcanologia reports. The media had a key role in conveying information during the seismic swarm, contributing to the risk perception. We stress that prevention actions based on seismic hazard knowledge are the best defence against earthquakes.
    Print ISSN: 0305-8719
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019
    Description: 〈span〉〈div〉Abstract〈/div〉Starting in 1988, with the installation of the first broadband (BB) instrument in Italy, the Mediterranean Very Broadband Seismographic Network (MedNet) program established a backbone network of BB stations of the highest quality in the Mediterranean Sea countries. The Mediterranean region is characterized by relevant and frequent seismicity related to its complex tectonics, due to the convergence of two major plates, Africa and Eurasia, and the involvement of other minor plates, as the Adriatic plate. Therefore, the MedNet project became a scientific research infrastructure of excellence, able to fill the gap of regional coverage when the availability of seismic BB instruments was still scarce. The main characteristics of the MedNet network are the highest quality of the seismographic instrumentation at remote sites and very low level of anthropogenic noise with stable conditions of pressure and temperature. After 30 yr of recordings, the MedNet program has proven that the early adoption of very BB instruments in selected sites have been the best choice. A large number of studies benefited from MedNet data, as seismic source computation and Earth structure reconstruction, at local and global scale.We present a concise overview of the contribution given by MedNet data in the last three decades to motivate and financially support the existence of this valuable infrastructure, and to further maintain this project.〈/span〉
    Print ISSN: 0895-0695
    Electronic ISSN: 1938-2057
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-12-13
    Description: We infer seismic azimuthal anisotropy from ambient-noise-derived Rayleigh waves in the wider Vienna Basin region. Cross-correlations of the ambient seismic field are computed for 1953 station pairs and periods from 5 to 25? s to measure the directional dependence of interstation Rayleigh-wave group velocities. We perform the analysis for each period on the whole data set, as well as in overlapping 2°-cells to regionalize the measurements, to study expected effects from isotropic structure, and isotropic–anisotropic trade-offs. To extract azimuthal anisotropy that relates to the anisotropic structure of the Earth, we analyse the group velocity residuals after isotropic inversion. The periods discussed in this study (5–20? s) are sensitive to crustal structure, and they allow us to gain insight into two distinct mechanisms that result in fast orientations. At shallow crustal depths, fast orientations in the Eastern Alps are S/N to SSW/NNE, roughly normal to the Alps. This effect is most likely due to the formation of cracks aligned with the present-day stress-field. At greater depths, fast orientations rotate towards NE, almost parallel to the major fault systems that accommodated the lateral extrusion of blocks in the Miocene. This is coherent with the alignment of crystal grains during crustal deformation occurring along the fault systems and the lateral extrusion of the central part of the Eastern Alps.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-08-12
    Print ISSN: 0895-0695
    Electronic ISSN: 1938-2057
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-11-18
    Description: Within the framework of the European joint research initiative AlpArray (http://www.alparray.ethz.ch/), we de- ployed overall 20 seismic broad-band stations in Northern Italy and on two islands in the Tyrrhenian Sea (Capraia and Montecristo) during Fall-Winter 2015. All the stations, connected in real-time, were installed at sites selected according to the AlpArray Seismic Network plan: 16 temporary stations running for two to three years and 4 new permanent stations in sites already occupied by accelerometers of the INGV national network. Most temporary stations are equipped with REF TEK 130S digitizers and Nanometrics Trillium Compact 120s sensors (a couple have Nanometrics Trillium 120P and one Streckeisen STS2). For each site we describe the settings and discuss the noise levels, the site effects and the preliminary sensitivity analysis.
    Description: Published
    Description: Vienna, Austria
    Description: 1T. Geodinamica e interno della Terra
    Description: open
    Keywords: AlpArray ; Seismic network ; Alpi
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: We document quantitatively observations of quasi-Love waves obtained at permanent (Italian National Seismic Network) and temporary seismic stations deployed in Italy between 2003 and 2006 (Retreat, CAT/SCAN projects). We analyzed large earthquakes with source parameters that favor quasi-Love wave generation within this time-span, including the Sumatra–Andaman earthquake of 12/26/04. The presence or the absence of the quasi-Love phase is compared to the smoothed anisotropic pattern defined by the numerous SKS splitting measurements obtained in peninsular Italy, and to the Italian upper mantle structure as defined by seismic tomography. The large-scale anisotropic features, responsible for shear-wave splitting and documented also by Pn and surface-wave anisotropy, generally display the correct geometry to explain the scattered quasi-Love waves. Quasi-Love observations do not demand a tilted-axis anisotropic geometry. We argue instead for anisotropy with laterally-variable horizontal symmetry axis in the upper mantle below the Italian peninsula.
    Description: Published
    Description: 26-38
    Description: 1T. Geodinamica e interno della Terra
    Description: JCR Journal
    Description: restricted
    Keywords: Seismic anisotropy ; Quasi-Love ; Italy ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: The seismic moment tensor is the complete mathematical representation of the movement on a fault 10 during an earthquake, comprising of the couples of forces that produced it, the description of the fault 11 geometry, and its size by means of the scalar seismic moment M0. 12 The computation of seismic moment tensor has become a widely diffused activity because of the 13 relevance of this kind of data in seismotectonic and geodynamic studies and, in more recent times, 14 because it allows obtaining rapid information about a seismic event immediately after its occurrence. This 15 progress has been possible with the advent of modern standardized instruments since the early 1960s, 16 above all of the very broadband seismographic stations that started to record in the late 1970s. Further- 17 more, time after time, the easier availability of digital data impressed a strong incentive to improve the 18 procedures of source parameter computation.
    Description: Unpublished
    Description: 1-15
    Description: 4IT. Banche dati
    Description: restricted
    Keywords: Regional centroid moment tensor ; Mediterranean ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: Il progetto AlpArray (PI E. Kissling, Seismology and Geodynamics ETH) è un’iniziativa europea di collaborazione interdisciplinare sismologica e geodinamica, il cui obiettivo principale è quello di migliorare la comprensione della struttura profonda e della geodinamica delle Alpi (la catena montuosa più studiata al mondo) tramite l’acquisizione, l’analisi e l’interpretazione di dati sismologici di alta qualità. Per ottenere delle immagini di estremo dettaglio della crosta e del mantello, AlpArray propone la realizzazione di una rete sismica a maglia il più possibile omogenea (massima distanza inter- stazione 52 km, backbone network), tramite la condivisione dei dati delle reti permanenti esistenti e l’installazione, da parte di ciascun paese partecipante, di numerose stazioni sismiche temporanee a larga banda (BB). Il progetto prevede l'installazione di circa 250 stazioni sismiche in tutta Europa, in particolare in Italia, Francia, Svizzera, Germania, Austria, Croazia, Repubblica Ceca, Bosnia, Ungheria, Slovenia e Polonia. I dati confluiranno all’interno dell’archivio europeo denominato European Integrated Data Archive (EIDA). Considerata l’estensione geografica dell’area, i partecipanti combineranno le infrastrutture esistenti per l’acquisizione dei dati, il loro trattamento, l’applicazione delle tecniche più avanzate di imaging e l’interpretazione e modellazione dei risultati, in uno sforzo transnazionale ad una scala mai realizzata prima in Europa. Si tratta quindi di un’occasione fondamentale per lo scambio di competenze tecniche e scientifiche all’avanguardia. L’INGV, oltre a condividere i dati delle proprie stazioni permanenti nell’area di interesse, si occupa della installazione e della manutenzione sul territorio italiano di 20 nuove stazioni-BB temporanee i cui dati verranno trasmessi in tempo reale (partecipando così alla realizzazione del backbone) e coadiuva l’ETH nella ricerca dei siti italiani per altrettante stazioni svizzere e nella loro manutenzione ordinaria. L’acquisizione di una mole notevole di nuovi dati permetterà di raffinare le conoscenze sulla struttura e la composizione della litosfera e del mantello al di sotto dell’area alpina: Queste conoscenze sono anche utili ai fini della modellazione geodinamica. Il potenziamento del monitoraggio sismico aiuterà ad individuare e studiare in maggior dettaglio le aree sismogenetiche della regione alpina.
    Description: Published
    Description: Trieste
    Description: 1T. Geodinamica e interno della Terra
    Description: open
    Keywords: AlpArray ; seismic network ; Rete sismica ; Alpi ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: Competing geodynamic scenarios proposed for northern Apennines (Italy) make very different predictions for the orientation of strain in the upper mantle. Constraints on the pattern are offered by observations of seismic anisotropy. Previous study of the anisotropy beneath the northern Apennines used birefringence of core-refracted shear waves (SKS phases), and demonstrated the presence of two domains: Tuscan and Adria. In the transition between the two domains, across the Apennines orogen, anisotropy measurements reflect a complex deep structure. To define better the upper-mantle structure beneath this area we analyze seismological data recorded by a set of seismic stations that operated for 3 years, between 2003 and 2006, located in the outer part of the Apennines belt, in the Adria terrane, collected by the RETREAT Project. Directionally distributed sets of SKS records were inverted for layered anisotropic structures with a well-tested method, adding new results to previous hypotheses for this area. New data analysis argues for two-layer anisotropy for sites located on the Apennines wedge and also one site in the Tuscan terrane. Beneath the wedge an upper layer with nearly north-south fast polarization pervades the lithospheric mantle, while at depth a nearly NW–SE Apennines-parallel direction is present in the lower layer. Beneath Tuscany a shallower NW–SE direction and a deeper E–W one suggest the deeper strain from active slab retreat, with a mantle-wedge circulation (i.e. an east–west corner flow), overlain by an Apennines-parallel fast polarization that could be a remnant of lower-crust deformation.
    Description: Published
    Description: 39-51
    Description: 1T. Geodinamica e interno della Terra
    Description: JCR Journal
    Description: restricted
    Keywords: Subduction zones ; Seismic anisotropy ; Northern Apennines ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...