ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-06-14
    Description: The architecture of sedimentary basins reflects the relationship between accommodation space and sediment supply, their rates and localization being variable during basin evolution. The mechanisms driving the interplay between tectonics and sedimentation in extensional back-arc basins overlying rheological weak zones inherited from an earlier orogenic evolution are less understood. A typical example is the Pannonian back-arc basin of Central Europe. It is floored by continental lithosphere and was affected by large amounts of extension driven by the subduction roll-back that took place in the Carpathians and/or Dinarides. A novel kinematic and seismic sequence stratigraphic interpretation calibrated by wells allows the quantification of the link between the formation of half-grabens and coeval sedimentation in the Great Hungarian Plain part of the basin. While the lower order tectonic induced cycles characterize the main phases of extension in various sub-basins, the higher order cyclicity and associated unconformities define individual moments of fault (re-)activation. Our novel interpretation of a temporal and spatial migration of extension during Miocene times explains the contrasting present-day strike of various sub-basins as a result of their gradual clockwise rotation. Incorporating the observed asymmetry, in particular the associated footwall exhumation, infers that the amount of extension is much larger than previously thought. The quantitative link between tectonics and sedimentation has allowed the definition of a novel model of sedimentation in asymmetric basins that can be ported to other natural scenarios of similarly hyper-extended back-arc basins observed elsewhere.
    Print ISSN: 0278-7407
    Electronic ISSN: 1944-9194
    Topics: Geosciences
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2015-01-24
    Description: Enabled by recently gained understanding of deep-seated and surficial Earth processes, a convergence of views between geophysics and sedimentary geology has been quietly taking place over the past several decades. Surface topography resulting from lithospheric memory, retained at various temporal and spatial scales, has become the connective link between these two methodologically diverse geoscience disciplines. Ideas leading to the hypothesis of plate tectonics originated largely with an oceanic focus, where dynamic and mostly horizontal movements of the crust could be envisioned. But when these notions were applied to the landscapes of the supposedly rigid plate interiors, there was less success in explaining the observed anomalies in terrestrial topography. Solid-Earth geophysics has now reached a developmental stage where vertical movements can be measured and modeled at meaningful scales and the deep-seated structures can be imaged with increasing resolution. Concurrently, there have been advances in quantifying mechanical properties of the lithosphere (the solid outer skin of Earth, usually defined to include both the crust and the solid but elastic upper mantle above the asthenosphere). The lithosphere acts as the intermediary that transfers the effects of mantle dynamics to the surface. These developments have allowed us to better understand the previously puzzling topographic features of plate interiors and continental margins. On the sedimentary geology side, new quantitative modeling techniques and holistic approaches to integrating source-to-sink sedimentary systems have led to clearer understanding of basin evolution and sediment budgets that allow the reconstruction of missing sedimentary records and past geological landscapes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cloetingh, Sierd -- Haq, Bilal U -- New York, N.Y. -- Science. 2015 Jan 23;347(6220):1258375. doi: 10.1126/science.1258375.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Utrecht University, Utrecht, Netherlands. ; National Science Foundation, Arlington, VA, USA. Sorbonne, Pierre & Marie Curie University, and CNRS, UMR 7193, ISTeP, F-75005 Paris, France. bilhaq@gmail.com.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25613899" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-02-19
    Description: We use lithospheric-scale analogue models to study the reactivation of preexisting heterogeneities under oblique shortening, and its relation to the origin of arcuate orogens. Reactivation of inherited rheological heterogeneities is an important mechanism for localization of deformation in compressional settings and consequent initiation of contractional structures during orogenesis. However, the presence of an inherited heterogeneity in the lithosphere is in itself not sufficient for its reactivation once the continental lithosphere is shortened. The heterogeneity orientation is important in determining if reactivation occurs and to which extent. This study aims at giving insights on this process by means of analogue experiments in which a linear lithospheric heterogeneity trends with various angles to the shortening direction. In particular, the key parameter investigated is the orientation (angle α) of a strong domain (SD) with respect to the shortening direction. Experimental results show that angles α ≥ 75° (high obliquity) allow for reactivation along the entire SD and the development of a linear orogen. For α ≤ 60° (low obliquity) the models are characterized by the development of an arcuate orogen, with the SD remaining partially non-reactivated. These results provide a new mechanism for the origin of some arcuate orogens, in which orocline formation was not driven by indentation or subduction processes, but by oblique shortening of inherited heterogeneities, as exemplified by the Ouachita orogen of the southern U.S.
    Print ISSN: 0278-7407
    Electronic ISSN: 1944-9194
    Topics: Geosciences
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-01-21
    Description: Oblique extension is expected to result in a combination of dip-slip and strike-slip displacement along faults with strike orthogonal and oblique to the extension direction, respectively. This general concept is in disagreement with observations from natural oblique rifts, where faults show dip-slip kinematics indicating pure extension irrespective of the fault strike with respect to the regional extension direction. Consequently, along oblique structures, slip is re-oriented, and oblique to the applied extension direction. Besides, at fault scale, slip is re-oriented along strike such that it is dip slip at the fault center and becomes highly oblique slip toward the fault tips. Here, we use analogue experiments to show that this discrepancy can be resolved when a preexisting weak zone (WZ) is present in the crust at the onset of oblique extension. The WZ is implemented within the lower crust and strikes oblique to the extension direction. Our experimental results show that an inherited WZ within the ductile crust favors the re-orientation of slip such that oblique extension results in pure dip-slip displacement on faults that strike oblique with respect to the extension direction. Furthermore, we show that slip is re-oriented along strike of major faults, such that the fault center shows dip-slip kinematics, whereas its tips display strike-slip kinematics. These findings call into question the use of paleostress reconstructions to constrain plate kinematics in oblique extensional tectonic settings.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-08-23
    Description: The crustal seismic velocity structure of northwestern Europe shows a low P-wave velocity zone (LVZ) in the lower crust along the Caledonian Thor suture zone (TSZ) that cannot be easily attributed to Avalonia or Baltica plates abutting the TSZ. The LVZ appears to correspond to a hitherto unrecognized crustal segment (accretionary complex) that separates Avalonia from Baltica, explaining well the absence of Avalonia further east. Consequently, the northern boundary of Avalonia is shifted ~150 km southward. Our interpretation, based on analysis of deep seismic profiles, places the LVZ in a consistent crustal domain interpretation. A comparison with present-day examples of the Kuril and Cascadia subduction zones suggests that the LVZ separating Avalonia from Baltica is composed of remnants of the Caledonian accretionary complex. If so, the present-day geometry probably originates from pre-Variscan extension and eduction during Devonian–Carboniferous backarc extension. The reinterpretation of deep crustal zonation provides a crustal framework in which the northern limit of Avalonia corresponds to the southern limit of the deep North German Basin and the northern limit of prolific gas reservoirs and late Mesozoic inversion structures.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-04-01
    Print ISSN: 1342-937X
    Electronic ISSN: 1878-0571
    Topics: Geosciences
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-12-01
    Print ISSN: 0278-7407
    Electronic ISSN: 1944-9194
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-09-01
    Description: Extensional basins often show along-strike variability in terms of fault geometries, basement structures, subsidence, and thermal evolution. This is particularly pronounced when extension reactivates preexisting suture zones with opposing dip directions, that is, opposite polarities, which creates wide strike-slip transfer zones. We have studied this extensional variability by means of thermomechanical lithospheric-scale 3-D numerical modeling. We conducted a series of experiments to model the extension of a thick lithosphere simulating a young orogenic area containing segmented suture zones inherited from former opposing subduction polarities, implemented as rheologically weak inclined layers with opposite dips. Numerical experiments demonstrate that the initial subduction sutures are reactivated by two long-lived lithospheric-scale detachment faults, which remain active until the onset of oceanic spreading. The opposite polarity of these faults causes their migration toward each other by asymmetric mantle lithosphere extension and thermal accretion. Crustal kinematics shows the formation of extensional detachment faults and high-offset listric normal faults. These structures undergo gradual tilting during their footwall exhumation, while the rheological weak suture layers are redistributed beneath the crust. The results demonstrate an active interaction along the strike of the system between the two opposite dipping weak zones, where fault segments mechanically interact. During extension, the maximum horizontal fault offset switches the apparent sense of shear in the separating strike-slip transfer zone. This kinematics explain the rapid change in the sense of shear in major strike-slip transfer zones or transform faults, such as observed during the extension of the Pannonian back-arc basin. ©2018. American Geophysical Union. All Rights Reserved.
    Print ISSN: 2169-9313
    Electronic ISSN: 2169-9356
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-02-24
    Description: In this study we present a new regional tomography model of the upper mantle beneath Italy and surrounding areas derived from inversion of travel times of P and S waves from the updated ISC catalogue. Beneath Italy we identify a high-velocity anomaly which behaves as a long narrow "sausage" with a steeply dipping part down to a depth of 400 km and then expanding horizontally over approximately 400 km. Rather than to interpret it as a remnant of the former Tethyan oceanic slab, we consider that it is made up of the infra continental lithospheric mantle of Adria, which is progressively delaminated, whereas its overlying crust becomes progressively accreted into the Apenninic tectonic wedge.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-06-10
    Description: In this study we present a new regional tomography model of the upper mantle beneath Italy and the surrounding area derived from the inversion of travel times of P and S waves from the updated International Seismological Centre (ISC) catalogue. Beneath Italy, we identify a high-velocity anomaly which has the appearance of a long, narrow "sausage" with a steeply dipping part down to a depth of 400 km and then expanding horizontally over approximately 400 km. Rather than to interpret it as a remnant of the former Tethyan oceanic slab, we consider that it is made up of the infra continental lithospheric mantle of Adria, which is progressively delaminated, whereas its overlying crust becomes progressively accreted into the Apenninic tectonic wedge.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...