ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-05-28
    Description: El Niño exhibits distinct Eastern Pacific (EP) and Central Pacific (CP) types which are commonly, but not always consistently, distinguished from each other by different signatures in equatorial climate variability. Here, we propose an index based on evolving climate networks to objectively discriminate between both flavors by utilizing a scalar-valued measure that quantifies spatial localization and dispersion in global teleconnections of surface air temperature. Our index displays a sharp peak (high localization) during EP events, whereas during CP events (larger dispersion) it remains close to the values observed during normal periods. In contrast to previous classification schemes, our approach specifically accounts for El Niño's global impacts. We confirm recent El Niño classifications for the years 1951 to 2014 and assign types to those cases were former works yielded ambiguous results. Ultimately, we demonstrate that our index provides a similar discrimination of La Niña episodes into two distinct types.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-05-15
    Description: Author(s): Jakob Runge, Reik V. Donner, and Jürgen Kurths Forecasting a time series from multivariate predictors constitutes a challenging problem, especially using model-free approaches. Most techniques, such as nearest-neighbor prediction, quickly suffer from the curse of dimensionality and overfitting for more than a few predictors which has limited the... [Phys. Rev. E 91, 052909] Published Wed May 13, 2015
    Keywords: Nonlinear Dynamics and Chaos
    Print ISSN: 1539-3755
    Electronic ISSN: 1550-2376
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-06-09
    Description: The seasonal cycle accounts for about 40% of the total sea level variability in the Baltic Sea. In a climate change context, changes are expected to occur, not only in mean levels but also in the seasonal characteristics of sea level. The present study addresses the quantification of changes in the seasonal cycle of sea level from a set of century-long tide gauge records in the Baltic Sea. In order to obtain robust estimates of the changes in amplitude and phase of the seasonal cycle, we apply different methods, including continuous wavelet filtering, multi-resolution decomposition based on the maximal overlap discrete wavelet transform, auto-regressive-based decomposition, singular spectrum analysis and empirical mode decomposition. The results show that all methods generally trace a similar long-term variability of the annual cycle amplitudes, and we focus on discrete wavelet analysis as the natural counterpart of classical moving Fourier analysis. In contrast to previous studies suggesting the existence of long-term changes in the seasonal cycle, in particular an increase of the annual amplitude, we find alternating periods of high and low amplitudes without any clear indication of systematic long-term trends. The derived seasonal patterns are spatially coherent, discriminating the stations in the Baltic entrance from the remaining stations in the Baltic basin, for which zonal wind accounts for typically more than 40% of the variations in amplitude. Keywords: sea level, Baltic Sea, seasonality, wavelet transform (Published: 8 June 2016) Citation: Tellus A 2016, 68, 30540, http://dx.doi.org/10.3402/tellusa.v68.30540
    Print ISSN: 0280-6495
    Electronic ISSN: 1600-0870
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-03-01
    Description: Recurrence in the phase space of complex systems is a well-studied phenomenon, which has provided deep insights into the nonlinear dynamics of such systems. For dissipative systems, characteristics based on recurrence plots have recently attracted much interest for discriminating qualitatively different types of dynamics in terms of measures of complexity, dynamical invariants, or even structural characteristics of the underlying attractor's geometry in phase space. Here, we demonstrate that the latter approach also provides a corresponding distinction between different co-existing dynamical regimes of the standard map, a paradigmatic example of a low-dimensional conservative system. Specifically, we show that the recently developed approach of recurrence network analysis provides potentially useful geometric characteristics distinguishing between regular and chaotic orbits. We find that chaotic orbits in an intermittent laminar phase (commonly referred to as sticky orbits) have a distinct geometric structure possibly differing in a subtle way from those of regular orbits, which is highlighted by different recurrence network properties obtained from relatively short time series. Thus, this approach can help discriminating regular orbits from laminar phases of chaotic ones, which presents a persistent challenge to many existing chaos detection techniques.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-11-05
    Description: We introduce the pyunicorn (Pythonic unified complex network and recurrence analysis toolbox) open source software package for applying and combining modern methods of data analysis and modeling from complex network theory and nonlinear time series analysis. pyunicorn is a fully object-oriented and easily parallelizable package written in the language Python. It allows for the construction of functional networks such as climate networks in climatology or functional brain networks in neuroscience representing the structure of statistical interrelationships in large data sets of time series and, subsequently, investigating this structure using advanced methods of complex network theory such as measures and models for spatial networks, networks of interacting networks, node-weighted statistics, or network surrogates. Additionally, pyunicorn provides insights into the nonlinear dynamics of complex systems as recorded in uni- and multivariate time series from a non-traditional perspective by means of recurrence quantification analysis, recurrence networks, visibility graphs, and construction of surrogate time series. The range of possible applications of the library is outlined, drawing on several examples mainly from the field of climatology.
    Print ISSN: 1054-1500
    Electronic ISSN: 1089-7682
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019
    Description: Abstract Magnetic storms are the most prominent global manifestations of out‐of‐equilibrium magnetospheric dynamics. Investigating the dynamical complexity exhibited by geomagnetic observables can provide valuable insights into relevant physical processes as well as temporal scales associated with this phenomenon. In this work, we utilize several innovative data analysis techniques enabling a quantitative nonlinear analysis of the nonstationary behavior of the disturbance storm time (Dst) index together with some of the main drivers of its temporal variability, the VBSouth electric field component, the vertical component of the interplanetary magnetic field, Bz, and the dynamic pressure of the solar wind, Pdyn. Using recurrence quantification analysis and recurrence network analysis, we obtain several complementary complexity measures that serve as markers of different physical processes underlying quiet and storm time magnetospheric dynamics. Our approach discriminates the magnetospheric activity in response to external (solar wind) forcing from primarily internal variability and highlights the case‐specific nature of interdependencies between the Dst index and its potential drivers that need to be accounted for in future improved space weather forecasting models.
    Print ISSN: 2169-9380
    Electronic ISSN: 2169-9402
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019
    Description: Abstract Magnetic storms are the most prominent global manifestations of out‐of‐equilibrium magnetospheric dynamics. Investigating the dynamical complexity exhibited by geomagnetic observables can provide valuable insights into relevant physical processes as well as temporal scales associated with this phenomenon. In this work, we utilize several innovative data analysis techniques enabling a quantitative nonlinear analysis of the nonstationary behavior of the disturbance storm time (Dst) index together with some of the main drivers of its temporal variability, the VBSouth electric field component, the vertical component of the interplanetary magnetic field, Bz, and the dynamic pressure of the solar wind, Pdyn. Using recurrence quantification analysis and recurrence network analysis, we obtain several complementary complexity measures that serve as markers of different physical processes underlying quiet and storm time magnetospheric dynamics. Our approach discriminates the magnetospheric activity in response to external (solar wind) forcing from primarily internal variability and highlights the case‐specific nature of interdependencies between the Dst index and its potential drivers that need to be accounted for in future improved space weather forecasting models.
    Print ISSN: 1539-4964
    Electronic ISSN: 1542-7390
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-04-13
    Description: Author(s): Marc Wiedermann, Jonathan F. Donges, Jürgen Kurths, and Reik V. Donner Networks with nodes embedded in a metric space have gained increasing interest in recent years. The effects of spatial embedding on the networks' structural characteristics, however, are rarely taken into account when studying their macroscopic properties. Here, we propose a hierarchy of null models… [Phys. Rev. E 93, 042308] Published Tue Apr 12, 2016
    Keywords: Networks and Complex Systems
    Print ISSN: 1539-3755
    Electronic ISSN: 1550-2376
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-06-08
    Description: Assessing the inherent uncertainties in satellite data products is a challenging task. Different technical approaches have been developed in the Earth Observation (EO) communities to address the validation problem which results in a large variety of methods as well as terminology. This paper reviews state-of-the-art methods of satellite validation and documents their similarities and differences. First the overall validation objectives and terminologies are specified, followed by a generic mathematical formulation of the validation problem. Metrics currently used as well as more advanced EO validation approaches are introduced thereafter. An outlook on the applicability and requirements of current EO validation approaches and targets is given.
    Print ISSN: 8755-1209
    Topics: Geosciences
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-10-05
    Description: Maintaining the synchronous motion of dynamical systems interacting on complex networks is often critical to their functionality. However, real-world networked dynamical systems operating synchronously are prone to random perturbations driving the system to arbitrary states within the corresponding basin of attraction, thereby leading to epochs of desynchronized dynamics with a priori unknown durations. Thus, it is highly relevant to have an estimate of the duration of such transient phases before the system returns to synchrony, following a random perturbation to the dynamical state of any particular node of the network. We address this issue here by proposing the framework of single-node recovery time ( SNRT ) which provides an estimate of the relative time scales underlying the transient dynamics of the nodes of a network during its restoration to synchrony. We utilize this in differentiating the particularly slow nodes of the netwo...
    Electronic ISSN: 1367-2630
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...