ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (3)
Collection
Years
Year
  • 1
    Publication Date: 2016-12-08
    Description: Wheat stem rust, caused by Puccinia graminis f. sp. tritici, is a major wheat disease which is mainly controlled through the release of resistant cultivars containing one or several resistance genes. Considerable...
    Electronic ISSN: 1756-0500
    Topics: Biology , Medicine
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-02-01
    Description: We collected shallow reflection data in southwestern Montana, USA, across a 5.4-m-high tectonic scarp. The goal was to image the normal fault associated with the scarp, observed in an adjacent trench. Processing of the data was challenging because the height of the scarp was comparable to the depths of the reflectors of interest. To find out how to proceed, we processed synthetic data generated using velocity models derived in part from actual shot gathers. The actual data are dominated by large-amplitude low-frequency surface waves, but clear high-frequency reflections are seen in the more distant geophones. Common-offset gathers for the raw and high-pass filtered data reveal sharp discontinuities in arrival times and a strong decrease in amplitudes, respectively, under the scarp. These changes in the wavefield are indicative of lateral variations in elastic properties and are consistent with the presence of a fault zone seen in the trench. The actual data were stacked after the surface waves were removed with a narrow f-k filter. Severe muting was applied to isolate the reflections seen in the high-pass filtered data. The stacked data reveal a clear and fairly continuous horizontal reflector on the downthrown side of the fault and more disrupted reflectors on the upthrown side, with truncated reflections and changes in amplitude roughly across the projection of the fault mapped in the trench. These observations are consistent with faulting and would be difficult to explain if the scarp were an erosional feature.
    Print ISSN: 2324-8858
    Electronic ISSN: 2324-8866
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-06-01
    Description: Recent publications on the regression between earthquake magnitudes assume that both magnitudes are affected by error and that only the ratio of error variances is known. If X and Y represent observed magnitudes, and x and y represent the corresponding theoretical values, the problem is to find the a and b of the best-fit line y= ax+ b. This problem has a closed solution only for homoscedastic errors (their variances are all equal for each of the two variables). The published solution was derived using a method that cannot provide a sum of squares of residuals. Therefore, it is not possible to compare the goodness of fit for different pairs of magnitudes. Furthermore, the method does not provide expressions for the x and y. The least-squares method introduced here does not have these drawbacks. The two methods of solution result in the same equations for a and b. General properties of a discussed in the literature but not proved, or proved for particular cases, are derived here. A comparison of different expressions for the variances of a and b is provided. The paper also considers the statistical aspects of the ongoing debate regarding the prediction of y given X. Analysis of actual data from the literature shows that a new approach produces an average improvement of less than 0.1 magnitude units over the standard approach when applied to Mw vs. mb and Mw vs. MS regressions. This improvement is minor, within the typical error of Mw. Moreover, a test subset of 100 predicted magnitudes shows that the new approach results in magnitudes closer to the theoretically true magnitudes for only 65 % of them. For the remaining 35 %, the standard approach produces closer values. Therefore, the new approach does not always give the most accurate magnitude estimates. © 2016, Springer Science+Business Media Dordrecht.
    Print ISSN: 1383-4649
    Electronic ISSN: 1573-157X
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...