ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-02-04
    Description: In the deep part of the Sea of Marmara (Turkey), the sedimentation developing upon the North Anatolian Fault is strongly influenced by the associated seismic activity, through gravity reworking (fluidized landslides) and tsunamis. Specific layers (homogenites + turbidites, HmTu), representing individual sedimentary events, have been characterized along three giant piston cores retrieved from the Çinarcik and Central (or Orta) basins. Pre-Holocene, nonmarine sediments, were analyzed, representing the last 12–17 kyr BP (before present). For a 2 kyr long interval, 11 events could be precisely correlated on both sides of the Central Basin's southwestern scarp. For each of them, based on the specific depositional process, the thickness difference between the two sites was considered as a direct estimation of the vertical component of a coeval coseismic offset. The homogenite (upper) component accounts for the major part of the thickness difference (ranging from 36 to 144 cm). These offsets were considered as likely representing dominantly vertical throws, along the transtensional southwestern boundary of the inner, pull-apart Central Basin. In terms of natural hazards, further investigations on this local behavior should rather be directed to tsunami genesis.
    Print ISSN: 1561-8633
    Electronic ISSN: 1684-9981
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-06-07
    Description: Methane-rich fluid vents have been widely observed and associated to active faults in the Sea of Marmara, along the submerged portion of the North Ana- tolian Fault (NAF). Episodic gas seepage also occurs in the Izmit Gulf, along the NAF segment that ruptured during the 1999 Izmit earthquake. This site is thus a unique area to test the hypothesis on the relation between strike-slip deforma- tion, seismic activity and gas expulsion within an active fault zone. A long-term multi-parametric experiment can be an effective way to study the irregular dy- namics of gas emission from seafloor and to understand its possible relation with seismic activity. A benthic seafloor observatory (SN-4) was deployed in the Izmit Gulf in 2009 using the R/V Urania as a demonstration mission in the framework of the EC ES- ONET (European Seas Observatory NETwork) project. Instrumental redundancy and specific cross-correlation of data from different sensors, proves to be funda- mental to distinguish actual seepage events from other signals related to ocean- ographic behaviour or even sensor biases. The observatory was equipped with a three component broad-band seismometer, a CTD with turbidity meter, two methane detectors, an oxygen sensor and a current-meter. All sensors installed on the observatory were managed by dedicated low-power electronics, which can manage a wide set of data streams with quite different sampling rates. A unique reference time, set by a central high-precision clock, is used to tag each datum. After six months of continuous monitoring, SN-4 was recovered in March 2010 in order to download the data and replace the batteries for a further six month mission period and finally recovered in October 2010. The data analysis clearly shows frequent degassing events, recorded as methane anomalies in seawater and as high-frequency short-duration signals recorded by the seismometer.. The time series of other oceanographic parameters (tempera- ture, oxygen concentration, turbidity and salinity) shows patterns that seem to be linked to both local gas seepage and to the circulation of water masses in the Gulf of Izmit. A comparative analysis of the various observables and their mutual correlation, can be a key tool to understand actual degassing events along the NAF. This analysis is first attempt in finding possible correlations be
    Description: Published
    Description: Cadiz, Spain
    Description: 3A. Ambiente Marino
    Description: restricted
    Keywords: seafloor observatory ; methane seepage ; multi-parametric ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems ; 03. Hydrosphere::03.04. Chemical and biological::03.04.08. Instruments and techniques ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Extended abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...