ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (65)
Collection
Keywords
Years
Year
  • 1
    Publication Date: 2023-01-13
    Keywords: Branched Glycerol dialkyl glycerol tetraethers, fractional abundance Ia; Branched Glycerol dialkyl glycerol tetraethers, fractional abundance Ib; Branched Glycerol dialkyl glycerol tetraethers, fractional abundance Ic; Branched Glycerol dialkyl glycerol tetraethers, fractional abundance IIa; Branched Glycerol dialkyl glycerol tetraethers, fractional abundance IIb; Branched Glycerol dialkyl glycerol tetraethers, fractional abundance IIc; Branched Glycerol dialkyl glycerol tetraethers, fractional abundance IIIa; Branched Glycerol dialkyl glycerol tetraethers, fractional abundance IIIb; Caldarchaeol isomer, fractional abundance; Congo_River; Crenarchaeol isomer, fractional abundance; Cyclization ratio of branched tetraethers; DATE/TIME; Methylation index of dominant branched tetraethers; MULT; Multiple investigations; Ratio; Standard deviation
    Type: Dataset
    Format: text/tab-separated-values, 884 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Hemingway, Jordon D; Schefuß, Enno; Spencer, Robert GM; Dinga, Bienvenu Jean; Eglinton, Timothy Ian; McIntyre, Cameron; Galy, Valier V (2017): Hydrologic controls on seasonal and inter-annual variability of Congo River particulate organic matter source and reservoir age. Chemical Geology, 466, 454-465, https://doi.org/10.1016/j.chemgeo.2017.06.034
    Publication Date: 2023-01-13
    Description: We present dissolved organic carbon (DOC) concentrations, particulate organic matter (POM) composition (d13C, d15N, D14C, N/C), and particulate glycerol dialkyl glycerol tetraether (GDGT) distributions from a 34-month time-series near the mouth of the Congo River. An end-member mixing model using d13C and N/C indicates that exported POM is consistently dominated by C3 rainforest soil sources, with increasing contribution from C3 vegetation and decreasing contribution from phytoplankton at high discharge. Large C4 inputs are never observed despite covering ~ 13% of the catchment. Low and variable D14C values during 2011 [annual mean = (-148 ± 82) per mil], when discharge from left-bank tributaries located in the southern hemisphere reached record lows, likely reflect a bias toward pre-aged POM derived from the Cuvette Congolaise swamp forest. In contrast, D14C values were stable near -50 per mil between January and June 2013, when left-bank discharge was highest. We suggest that headwater POM is replaced and/or diluted by C3 vegetation and pre-aged soils during transit through the Cuvette Congolaise, whereas left-bank tributaries export significantly less pre-aged material. GDGT distributions provide further evidence for seasonal and inter-annual variability in soil provenance. The cyclization of branched tetraethers and the GDGT-0 to crenarchaeol ratio are positively correlated with discharge (r 〉=0.70; p-value 〈= 4.3 × 10**-5) due to the incorporation of swamp-forest soils when discharge from right-bank tributaries located in the northern hemisphere is high. Both metrics reach record lows during 2013, supporting our interpretation of increased left-bank contribution at this time. We conclude that hydrologic variability is a major control of POM provenance in the Congo River Basin and that tropical wetlands can be a significant POM source despite their small geographic coverage.
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-06-24
    Keywords: C3 soils, fractional contribution; C3 vegetation, fractional contribution; Congo_River; DATE/TIME; Event label; MULT; Multiple investigations; Oubangui_River; Phytoplankton, fractional contribution; Reference/source
    Type: Dataset
    Format: text/tab-separated-values, 401 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-08
    Keywords: Carbon, organic, dissolved; Carbon, organic, particulate; Carbon, organic, total; Congo_River; DATE/TIME; MULT; Multiple investigations; Nitrogen, organic; Nitrogen/Carbon ratio; pH; River discharge; Standard deviation; Temperature, air, calculated; Temperature, water; Δ14C; Δ14C, standard deviation; δ13C; δ13C, standard deviation; δ15N; δ15N, standard deviation
    Type: Dataset
    Format: text/tab-separated-values, 545 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-09-17
    Description: The mobilization of glacial permafrost carbon during the last glacial-interglacial transition has been suggested by indirect evidence to be an additional and significant source of greenhouse gases to the atmosphere, especially at times of rapid sea-level rise. Here we present the first direct evidence for the release of ancient carbon from degrading permafrost in East Asia during the last 17 kyrs, using biomarkers and radiocarbon dating of terrigenous material found in two sediment cores from the Okhotsk Sea. Upscaling our results to the whole Arctic shelf area, we show by carbon cycle simulations that deglacial permafrost-carbon release through sea-level rise likely contributed significantly to the changes in atmospheric CO2 around 14.6 and 11.5 kyrs BP.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-06-26
    Description: The last deglaciation was characterized by rising concentrations in atmospheric CO2 (CO2atm) and a decrease in its radiocarbon content (∆14Catm). Mobilization of 14C-depleted terrestrial organic carbon, which was previously frozen in extensive boreal permafrost soils, might have contributed to both changes. Since parts of this potentially mobilized organic carbon was reburied in marine sediments, records of accumulation of terrigenous biomarkers and their compound-specific radiocarbon ages can provide insights into the timing of, and controls on permafrost decomposition. We present data from marine sediment cores covering the last deglaciation that were retrieved from key locations potentially receiving terrigenous material mobilized from hotspot areas of permafrost thaw. In the North Pacific, we studied two cores off the Amur River draining into the Okhotsk Sea, and one core from the Northeastern Bering Sea adjacent to the Bering shelf (one of the largest shelf areas flooded during the deglaciation), which receives input from the Yukon River. During the Last Glacial Maximum these catchments were completely covered with permafrost. Today, the Amur drainage basin is free of permafrost while the Yukon catchment is covered by discontinuous permafrost. Besides, we investigated one core from the northwestern Black Sea as a record of terrigenous material released from the thawing European tundra. All sites show distinct deglacial maxima in accumulation of old terrigenous biomarkers (5-20 kyr old at the time of deposition). In the Black Sea, one early maximum of terrigenous organic matter accumulation occurred during HS1. In the North Pacific region, two more pronounced maxima occurred later during meltwater pulses suggesting that sea-level rise remobilized old terrestrial carbon from permafrost on the flooded shelfs. Sea-level rise thus likely caused abrupt decomposition events across the Okhotsk and Bering Shelfs. We extrapolate our localized findings to an overall potential carbon release during deglaciation of 285 Pg C from coastal erosion in the Arctic Ocean and the related permafrost decomposition. By analysing some idealized scenarios using the global carbon cycle model BICYCLE we estimate the impact of carbon release from thawing permafrost on the atmosphere. We find that it might have accounted for a deglacial rise in CO2atm of up to 15 ppm, and to a decline in ∆14Catm of 15 T ̇hese results, if restricted to the three peak events as supported by our data, might have contributed particularly to abrupt changes in CO2atm and ∆14Catm, corresponding to 15-20% of both, the observed rise in CO2atm of ∼90 ppm, and the residual in ∆14Catm that is unexplained by changes in the 14C production rate.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-03-18
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 15 (2018): 3357-3375, doi:10.5194/bg-15-3357-2018.
    Description: The modern-day Godavari River transports large amounts of sediment (170 Tg per year) and terrestrial organic carbon (OCterr; 1.5 Tg per year) from peninsular India to the Bay of Bengal. The flux and nature of OCterr is considered to have varied in response to past climate and human forcing. In order to delineate the provenance and nature of organic matter (OM) exported by the fluvial system and establish links to sedimentary records accumulating on its adjacent continental margin, the stable and radiogenic isotopic composition of bulk OC, abundance and distribution of long-chain fatty acids (LCFAs), sedimentological properties (e.g. grain size, mineral surface area, etc.) of fluvial (riverbed and riverbank) sediments and soils from the Godavari basin were analysed and these characteristics were compared to those of a sediment core retrieved from the continental slope depocenter. Results show that river sediments from the upper catchment exhibit higher total organic carbon (TOC) contents than those from the lower part of the basin. The general relationship between TOC and sedimentological parameters (i.e. mineral surface area and grain size) of the sediments suggests that sediment mineralogy, largely driven by provenance, plays an important role in the stabilization of OM during transport along the river axis, and in the preservation of OM exported by the Godavari to the Bay of Bengal. The stable carbon isotopic (δ13C) characteristics of river sediments and soils indicate that the upper mainstream and its tributaries drain catchments exhibiting more 13C enriched carbon than the lower stream, resulting from the regional vegetation gradient and/or net balance between the upper (C4-dominated plants) and lower (C3-dominated plants) catchments. The radiocarbon contents of organic carbon (Δ14COC) in deep soils and eroding riverbanks suggests these are likely sources of "old" or pre-aged carbon to the Godavari River that increasingly dominates the late Holocene portion of the offshore sedimentary record. While changes in water flow and sediment transport resulting from recent dam construction have drastically impacted the flux, loci, and composition of OC exported from the modern Godavari basin, complicating reconciliation of modern-day river basin geochemistry with that recorded in continental margin sediments, such investigations provide important insights into climatic and anthropogenic controls on OC cycling and burial.
    Description: This project was supported by the Swiss National Science Foundations (“CAPS LOCK” grant no. 200021-140850 and “CAPS-LOCK2” grant no. 200021-163162). Francien Peterse received funding from NWO-Veni grant (grant no. 863.13.016). Liviu Giosan thanks grants from the National Science Foundation (OCE-0841736) and Woods Hole Oceanographic Institution.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Geophysical Research: Oceans 120 (2015): 2784–2799, doi:10.1002/2014JC010643.
    Description: To better understand the current carbon cycle and potentially detect its change in the rapidly changing Arctic Ocean, we examined sinking particles collected quasi-continuously over a period of 7 years (2004–2011) by bottom-tethered sediment trap moorings in the central Canada Basin. Total mass flux was very low (〈100 mg m−2 d−1) at all sites and was temporally decoupled from the cycle of primary production in surface waters. Extremely low radiocarbon contents of particulate organic carbon and high aluminum contents in sinking particles reveal high contributions of resuspended sediment to total sinking particle flux in the deep Canada Basin. Station A (75°N, 150°W) in the southwest quadrant of the Canada Basin is most strongly influenced while Station C (77°N, 140°W) in the northeast quadrant is least influenced by lateral particle supply based on radiocarbon content and Al concentration. The results at Station A, where three sediment traps were deployed at different depths, imply that the most likely mode of lateral particle transport was as thick clouds of enhanced particle concentration extending well above the seafloor. At present, only 1%–2% of the low levels of new production in Canada Basin surface waters reaches the interior basin. Lateral POC supply therefore appears to be the major source of organic matter to the interior basin. However, ongoing changes to surface ocean boundary conditions may influence both lateral and vertical supply of particulate material to the deep Canada Basin.
    Description: This research was funded by the NSF Division of Polar Programs (ARC-0909377), the Ocean and Climate Change Institute of Woods Hole Oceanographic Institution, and ETH Zürich. J.H. and M.K. were partly supported by the National Research Foundation of Korea grant funded by the Korean Government (2011–0013629).
    Keywords: Canada Basin ; Particulate organic carbon ; Lateral supply ; Radiocarbon ; Carbon cycle
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: application/vnd.ms-excel
    Format: application/msword
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2015. This is the author's version of the work. It is posted here by permission of Elsevier for personal use, not for redistribution. The definitive version was published in Geochimica et Cosmochimica Acta 171 (2015): 100-120, doi:10.1016/j.gca.2015.08.005.
    Description: The Mackenzie River in Canada is by far the largest riverine source of sediment and organic carbon (OC) to the Arctic Ocean. Therefore the transport, degradation and burial of OC along the land-to-ocean continuum for this riverine system is important to study both regionally and as a dominant representative of Arctic rivers. Here, we apply sedimentological (grain size, mineral surface area), and organic and inorganic geochemical techniques (%OC, δ13C-OC and Δ14C-OC, 143Nd/144Nd,δ2H and δ18O, major and trace elements) on particulate, bank, channel and lake surface sediments from the Mackenzie Delta, as well as on surface sediments from the Mackenzie shelf in the Beaufort Sea. Our data show a hydrodynamic sorting effect resulting in the accumulation of finer-grained sediments in lake and shelf deposits. A general decrease in organic carbon (OC) to mineral surface area ratios from river-to-sea furthermore suggests a loss of mineral-bound terrestrial OC during transport through the delta and deposition on the shelf. The net isotopic value of the terrestrial OC that is lost en route, derived from relationships between δ13C, OC and surface area, is -28.5‰ for δ13C and -417‰ for Δ14C. We calculated that OC burial efficiencies are around 55%, which are higher (~20%) than other large river systems such as the Amazon. Old sedimentary OC ages, up to 12 14C-ky, suggest the delivery of both a petrogenic OC source (with an estimated contribution of 19±9%) as well as a pre-aged terrestrial OC source. We calculated the 14C-age of this pre-aged, biogenic, component to be about 6100 yrs, or -501‰, which illustrates that terrestrial OC in the watershed can reside for millennia in soils before being released into the river. Surface sediments in lakes across the delta (n=20) showed large variability in %OC (0.92% to 5.7%) and δ13C (-30.7‰ to -23.5‰). High-closure lakes, flooding only at exceptionally high water levels, hold high sedimentary OC contents (〉 2.5%) and young biogenic OC with a terrestrial or an autochthonous source whereas no-closure lakes, permanently connected to a river channel, hold sediments with pre-aged, terrestrial OC. The intermediate low-closure lakes, flooding every year during peak discharge, display the largest variability in OC content, age and source, likely reflecting variability in for example the length of river-lake connections, the distance to sediment source and the number of intermediate settling basins. Bank, channel and suspended sediment show variable 143Nd/144Nd values, yet there is a gradual but distinct spatial transition in 143Nd/144Nd (nearly three ε units; from -11.4 to -13.9) in the detrital fraction of lake surface sediments from the western to the eastern delta. This reflects the input of younger Peel River catchment material in the west and input of older geological source material in the east, and suggests that lake sediments can be used to assess variability in source watershed patterns across the delta.
    Description: We would like to acknowledge financial support from the WHOI Arctic Research Initiative, the US NSF Arctic Natural Sciences (ARC #0909377), the US NSF Arctic GRO (#0732522 and #1107774), NWO Rubicon (#825.10.022) and NWO Veni (#863.12.004), and ETH Zürich.
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...