ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: Sensitivity analysis estimates the relative contribution of the uncertainty in input values to the uncertainty of model outputs. Partial Rank Correlation Coefficient (PRCC) and Standardized Rank Regression Coefficient (SRRC) are methods of conducting sensitivity analysis on nonlinear simulation models like the Integrated Medical Model (IMM). The PRCC method estimates the sensitivity using partial correlation of the ranks of the generated input values to each generated output value. The partial part is so named because adjustments are made for the linear effects of all the other input values in the calculation of correlation between a particular input and each output. In SRRC, standardized regression-based coefficients measure the sensitivity of each input, adjusted for all the other inputs, on each output. Because the relative ranking of each of the inputs and outputs is used, as opposed to the values themselves, both methods accommodate the nonlinear relationship of the underlying model. As part of the IMM v4.0 validation study, simulations are available that predict 33 person-missions on ISS and 111 person-missions on STS. These simulated data predictions feed the sensitivity analysis procedures. The inputs to the sensitivity procedures include the number occurrences of each of the one hundred IMM medical conditions generated over the simulations and the associated IMM outputs: total quality time lost (QTL), number of evacuations (EVAC), and number of loss of crew lives (LOCL). The IMM team will report the results of using PRCC and SRRC on IMM v4.0 predictions of the ISS and STS missions created as part of the external validation study. Tornado plots will assist in the visualization of the condition-related input sensitivities to each of the main outcomes. The outcomes of this sensitivity analysis will drive review focus by identifying conditions where changes in uncertainty could drive changes in overall model output uncertainty. These efforts are an integral part of the overall verification, validation, and credibility review of IMM v4.0.
    Keywords: Aerospace Medicine
    Type: GRC-E-DAA-TN29568 , 2016 NASA Human Research Program Investigators'' Workshop (HRP IWS 2016); Feb 08, 2016 - Feb 11, 2016; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Electronics and Electrical Engineering; Aerospace Medicine
    Type: JSC-CN-35404 , Human Research Program Investigators'' Workshop (HRP IWS 2016); Feb 08, 2016 - Feb 11, 2016; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: A wide range of computational models and analyses have been applied to spaceflight risk assessment and countermeasure development. The benefits of using computational modeling to enhance Human Research Program (HRP) goals include the ability to mathematically represent physiological systems, integrate multiple, discrete experimental measures, span multiple temporal and spatial scales, determine important factors within the system and provide estimates of unmeasurable quantities. In the area of application, computational models provide a means of developing simulations to test hypotheses, determining key factors of the system to aid experimental design and bridging gaps in sparse data by mathematically simulating large populations. Specifically, computational models and their supporting analysis tools have the proven potential to integrate analyses of risk factors to enhance mission planning and preparation capabilities and to inform spacecraft design and countermeasure development. Appropriately applied, computational models may allow intelligent, unbiased physiological parameter assessment to enable hypothesis testing and model based design of experiments. HRP recently formed the Computational Modeling Project (CMP), managed out of Glenn Research Center, as a cross-cutting activity aimed at leveraging the growing power and acceptance of computational modeling in informing clinical, physiological, and biological studies. This presentation will provide an overview of the challenges and opportunities in implementing various forms of computational models in support of the HRPs path to risk reduction.
    Keywords: Computer Programming and Software; Aerospace Medicine
    Type: GRC-E-DAA-TN51675 , 2018 NASA Human Research Program Investigators'' Workshop (HRP IWS 2018); Jan 22, 2018 - Jan 25, 2018; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-13
    Description: INTRODUCTION: Current long-duration missions to the International Space Station and future exploration-class missions beyond low-Earth orbit, such as to Mars and asteroids, expose astronauts to increased risk of Visual Impairment and Intracranial Pressure (VIIP) syndrome [1]. It has been hypothesized that the headward shift of cerebral spinal fluid (CSF) and blood in microgravity may cause significant elevation of intracranial pressure (ICP), which in turn induces VIIP syndrome through biomechanical pathways [1, 2]. However, there is insufficient evidence to confirm this hypothesis. In this light, we are developing lumped-parameter models of fluid transport in the central nervous system (CNS) as a means to simulate the influence of microgravity on ICP. The CNS models will also be used in concert with the lumped parameter and finite element models of the eye described in the realted IWS abstracts submitted by Nelson et al., Feola et al. and Ethier et al. METHODS: We have developed a nine compartment CNS model (Figure 1) capable of both time-dependent and steady state fluid transport simulations, based on the works of Stevens et al. [3]. The breakdown of compartments within the model includes: vascular (3), CSF (2), brain (1) and extracranial (3). The boundary pressure in the Central Arteries [A] node is prescribed using an oscillating pressure function PA(t) simulating the carotid pulsatile pressure wave as developed by Linninger et al. [4]. For each time step, pressures are integrated through time using an adaptive-timestep 4th and 5th order Runga-Kutta solver. Once pressures are found, constitutive equations are used to solve for flowrates (Q) between each compartment. In addition to fluid flow between the different compartments, compliance (C) interactions between neighboring compartments are represented. We are also developing a second CNS model based on the works of Linninger et al. [4] which takes a more granular approach to represent the interactions of the intracranial and spinal compartments with the inclusion of arteries, arterioles, capillaries, venules, veins, venous sinus, and ventricles. The flow through the arteries, veins and CSF compartments are governed by continuity, momentum and distensibility balance equations. Furthermore, unlike the Stevens et al. approach, the Monro-Kellie doctrine of constant cranial volume and the bi-phasic nature of the brain parenchyma are implemented. These features appear to be more consistent with the physiologic and anatomical behavior of the CNS, and follow a modeling philosophy similar to the lumped parameter eye model that is intended to be integrated with the CNS model. However, Linningers approach has never been implemented to include hydrostatic gradient and microgravity simulation capabilities. Therefore, we aim at implement this modeling approach for spaceflight simulations and assess its overall applicability to VIIP research. OBJECTIVES: We will present verification and validation test results for both models, as well as head-to-head comparison to explore their strengths and limitations with respect to mathematical implementation and physiological significance for VIIP research. In doing so, we hope to provide some guidance to the HRP research community on how to appropriately leverage lumped parameter models for space biomedical research.
    Keywords: Numerical Analysis; Aerospace Medicine
    Type: JSC-CN-32248 , NASA Human Research Program Investigators'' Workshop; Jan 13, 2015 - Jan 15, 2015; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-13
    Description: A recognized side effect of prolonged microgravity exposure is visual impairment and intracranial pressure (VIIP) syndrome. The medical understanding of this phenomenon is at present preliminary, although it is hypothesized that the headward shift of bodily fluids in microgravity may be a contributor. Computational models can be used to provide insight into the origins of VIIP. In order to further investigate this phenomenon, NASAs Digital Astronaut Project (DAP) is developing an integrated computational model of the human body which is divided into the eye, the cerebrovascular system, and the cardiovascular system. This presentation will focus on the development and testing of the computational model of an integrated model of the cardiovascular system (CVS) and central nervous system (CNS) that simulates the behavior of pressures, volumes, and flows within these two physiological systems.
    Keywords: Aerospace Medicine
    Type: GRC-E-DAA-TN20360 , 2015 Human Research Program Investigators'' Workshop; Jan 13, 2015 - Jan 15, 2015; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-13
    Description: Visual Impairment and Intracranial Pressure (VIIP) syndrome is a concern for long-duration space flight. Current thinking suggests that the ocular changes observed in VIIP syndrome are related to cephalad fluid shifts resulting in altered fluid pressures [1]. In particular, we hypothesize that increased intracranial pressure (ICP) drives connective tissue remodeling of the posterior eye and optic nerve sheath (ONS). We describe here finite element (FE) modeling designed to understand how altered pressures, particularly altered ICP, affect the tissues of the posterior eye and optic nerve sheath (ONS) in VIIP. METHODS: Additional description of the modeling methodology is provided in the companion IWS abstract by Feola et al. In brief, a geometric model of the posterior eye and optic nerve, including the ONS, was created and the effects of fluid pressures on tissue deformations were simulated. We considered three ICP scenarios: an elevated ICP assumed to occur in chronic microgravity, and ICP in the upright and supine positions on earth. Within each scenario we used Latin hypercube sampling (LHS) to consider a range of ICPs, ONH tissue mechanical properties, intraocular pressures (IOPs) and mean arterial pressures (MAPs). The outcome measures were biomechanical strains in the lamina cribrosa, optic nerve and retina; here we focus on peak values of these strains, since elevated strain alters cell phenotype and induce tissue remodeling. In 3D, the strain field can be decomposed into three orthogonal components, denoted as first, second and third principal strains. RESULTS AND CONCLUSIONS: For baseline material properties, increasing ICP from 0 to 20 mmHg significantly changed strains within the posterior eye and ONS (Fig. 1), indicating that elevated ICP affects ocular tissue biomechanics. Notably, strains in the lamina cribrosa and retina became less extreme as ICP increased; however, within the optic nerve, the occurrence of such extreme strains greatly increased as ICP was elevated (Fig. 2). In particular, c. 48 of simulations in the elevated ICP condition showed peak strains in the optic nerve that exceeded the strains expected on earth. Such extreme strains are likely important, since they represent a larger signal for mechano-responsive resident cells [2]. The models predicted little to no anterior motion of the prelaminar neural tissue (optic nerve swelling, or papilledema, secondary to axoplasmic stasis), typically seen with elevated ICP. Specialized FE models to capture axoplasmic stasis would be required to study papilledema. These results suggest that the most notable effect of elevated ICP may occur via direct optic nerve loading, rather than through connective tissue deformation. These FE models can inform the design of future studies designed to bridge the gap between biomechanics and pathophysiological function in VIIP.
    Keywords: Aerospace Medicine
    Type: GRC-E-DAA-TN29727 , 2016 NASA Human Research Program Investigators'' Workshop; Feb 08, 2016 - Feb 11, 2016; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: The IMMs ability to assess mission outcome risk levels relative to available resources provides a unique capability to provide guidance on optimal operational medical kit and vehicle resources. Post-processing optimization allows IMM to optimize essential resources to improve a specific model outcome such as maximization of the Crew Health Index (CHI), or minimization of the probability of evacuation (EVAC) or the loss of crew life (LOCL). Mass and or volume constrain the optimized resource set. The IMMs probabilistic simulation uses input data on one hundred medical conditions to simulate medical events that may occur in spaceflight, the resources required to treat those events, and the resulting impact to the mission based on specific crew and mission characteristics. Because IMM version 4.0 provides for partial treatment for medical events, IMM Optimization 4.0 scores resources at the individual resource unit increment level as opposed to the full condition-specific treatment set level, as done in version 3.0. This allows the inclusion of as many resources as possible in the event that an entire set of resources called out for treatment cannot satisfy the constraints. IMM Optimization version 4.0 adds capabilities that increase efficiency by creating multiple resource sets based on differing constraints and priorities, CHI, EVAC, or LOCL. It also provides sets of resources that improve mission-related IMM v4.0 outputs with improved performance compared to the prior optimization. The new optimization represents much improved fidelity that will improve the utility of the IMM 4.0 for decision support.
    Keywords: Aerospace Medicine; Statistics and Probability; Computer Programming and Software
    Type: GRC-E-DAA-TN29567 , 2016 NASA Human Research Program Investigators'' Workshop (HRP IWS 2016); Feb 08, 2016 - Feb 11, 2016; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: Purpose: Visual Impairment and Intracranial Pressure (VIIP) syndrome is a new and significant health concern for long-duration space missions. Its etiology is unknown, but is thought to involve elevated intracranial pressure (ICP)that induces connective tissue changes and remodeling in the posterior eye (Alexander et al. 2012). Here we study the acute biomechanical response of the lamina cribrosa (LC) and optic nerve to elevations in ICP utilizing finite element (FE) modeling. Methods: Using the geometry of the posterior eye from previous axisymmetric FE models (Sigal et al. 2004), we added an elongated optic nerve and optic nerve sheath, including the pia and dura. Tissues were modeled as linear elastic solids. Intraocular pressure and central retinal vessel pressures were set at 15 mmHg and 55 mmHg, respectively. ICP varied from 0 mmHg (suitable for standing on earth) to 30 mmHg (representing severe intracranial hypertension, thought to occur in space flight). We focused on strains and deformations in the LC and optic nerve (within 1 mm of the LC) since we hypothesize that they may contribute to vision loss in VIIP. Results: Elevating ICP from 0 to 30 mmHg significantly altered the strain distributions in both the LC and optic nerve (Figure), notably leading to more extreme strain values in both tension and compression. Specifically, the extreme (95th percentile) tensile strains in the LC and optic nerve increased by 2.7- and 3.8-fold, respectively. Similarly, elevation of ICP led to a 2.5- and 3.3-fold increase in extreme (5th percentile) compressive strains in the LC and optic nerve, respectively. Conclusions: The elevated ICP thought to occur during spaceflight leads to large acute changes in the biomechanical environment of the LC and optic nerve, and we hypothesize that such changes can activate mechanosensitive cells and invoke tissue remodeling. These simulations provide a foundation for more comprehensive studies of microgravity effects on human vision, e.g. to guide biological studies in which cells and tissues are mechanically loaded in a ranger elevant for microgravity conditions.
    Keywords: Aerospace Medicine
    Type: GRC-E-DAA-TN23060 , The Association for Research in Vision and Ophthalmology (ARVO) 2015 Annual Meeting; May 03, 2015 - May 07, 2015; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: Probabilistic Risk Assessment (PRA) is a modeling tool used to predict potential outcomes of a complex system based on a statistical understanding of many initiating events. Utilizing a Monte Carlo method, thousands of instances of the model are considered and outcomes are collected. PRA is considered static, utilizing probabilities alone to calculate outcomes. Dynamic Probabilistic Risk Assessment (dPRA) is an advanced concept where modeling predicts the outcomes of a complex system based not only on the probabilities of many initiating events, but also on a progression of dependencies brought about by progressing down a time line. Events are placed in a single time line, adding each event to a queue, as managed by a planner. Progression down the time line is guided by rules, as managed by a scheduler. The recently developed Integrated Medical Model (IMM) summarizes astronaut health as governed by the probabilities of medical events and mitigation strategies. Managing the software architecture process provides a systematic means of creating, documenting, and communicating a software design early in the development process. The software architecture process begins with establishing requirements and the design is then derived from the requirements.
    Keywords: Statistics and Probability
    Type: GRC-E-DAA-TN28535 , 2016 Human Research Program Investigators'' Workshop; Feb 08, 2016 - Feb 11, 2016; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: The Integrated Medical Model is a probabilistic simulation model that uses input data on 100 medical conditions to simulate expected medical events, the resources required to treat, and the resulting impact to the mission for specific crew and mission characteristics. The newest development version of IMM, IMM v4.0, adds capabilities that remove some of the conservative assumptions that underlie the current operational version, IMM v3. While IMM v3 provides the framework to simulate whether a medical event occurred, IMMv4 also simulates when the event occurred during a mission timeline. This allows for more accurate estimation of mission time lost and resource utilization. In addition to the mission timeline, IMMv4.0 features two enhancements that address IMM v3 assumptions regarding medical event treatment. Medical events in IMMv3 are assigned the untreated outcome if any resource required to treat the event was unavailable. IMMv4 allows for partially treated outcomes that are proportional to the amount of required resources available, thus removing the dichotomous treatment assumption. An additional capability IMMv4 is to use an alternative medical resource when the primary resource assigned to the condition is depleted, more accurately reflecting the real-world system. The additional capabilities defining IMM v4.0the mission timeline, partial treatment, and alternate drug result in more realistic predicted mission outcomes. The primary model outcomes of IMM v4.0 for the ISS6 mission, including mission time lost, probability of evacuation, and probability of loss of crew life, are be compared to those produced by the current operational version of IMM to showcase enhanced prediction capabilities.
    Keywords: Computer Programming and Software; Statistics and Probability; Aerospace Medicine
    Type: GRC-E-DAA-TN20329 , Space Radiation Investigators'' Workshop and Behavioral Health and Performance Working Group; Jan 12, 2015 - Jan 15, 2015; Galveston, TX; United States|NASA Human Research Program Investigators'' Workshop: Integrated Pathways to Mars; Jan 13, 2015 - Jan 15, 2015; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...