ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (4)
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2018-12-01
    Print ISSN: 1463-5003
    Electronic ISSN: 1463-5011
    Topics: Geography , Geosciences , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  (Master thesis), Christian-Albrechts-Universität Kiel, Kiel, Germany, 92 pp
    Publication Date: 2018-01-10
    Keywords: Course of study: MSc Climate Physics
    Type: Thesis , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-02-08
    Description: The parameterization of sub-grid scale processes is one of the key challenges towards improved numerical simulations of the atmospheric and oceanic circulation. Numerical weather prediction models as well as climate models would benefit from more sophisticated turbulence closures that allow for less spurious dissipation at the grid-scale and consequently higher and more realistic levels of eddy kinetic energy (EKE). Recent studies propose to use a hyperviscous closure in combination with an additional deterministic forcing term as a negative viscosity to represent backscatter of energy from unresolved scales. The sub-grid EKE is introduced as an additional prognostic variable that is fed by dissipation at the grid scale, and enables recycling of EKE via the backscatter term at larger scales. This parameterization was previously shown to work well in zonally re-entrant channel configurations. Here, a generalization in the form of a Rossby number-dependent scaling for the strength of the backscatter is introduced to represent the emergence of a forward energy-cascade in unbalanced flows near the boundaries. We apply the parameterization to a shallow water model of a double gyre basin and provide evidence for its general applicability. In terms of mean state and variability, a low resolution model is considerably improved towards a high resolution control run at low additional computational cost.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  EPIC3Meteorologentagung DACH 2016, Deutschland, Berlin, 2016-03-14-2016-03-18
    Publication Date: 2019-12-03
    Description: For more than a decade meteorologists at the German Antarctic research station Neumayer (70°S, 008°W) offer detailed and individual summer weather forecasts for all activities in the Dronning Maud Land. Especially the intercontinental air link with Cape Town made the establishment of this service mandatory. The work is performed in close cooperation between the Alfred Wegener Institute for Polar and Marine Research (AWI) and the German Weather Service (DWD). The forecasts base mainly on in situ data including automatic weather stations (AWS), on near real time satellite pictures and on a variety of model products mainly from the Antarctic Mesoscale Prediction System (AMPS) and the European Centre for Medium-Range Weather Forecasts (ECMWF). To optimize this service the errors of a typical AWS had been quantified by running an unmaintained AWS one year side by side of the maintained instruments from the meteorological observatory from Neumayer. In a second year the same AWS was placed 11 km north of Neumayer to judge the spatial footprint of the observatory data. By comparing model products with the measurements of the observatory systematic errors in the forecast products have been observed. Also the ERA-Interim reanalysis differs significantly from the temperature time series observed at Neumayer despite the fact that the data is fed into the Global Telecommunication System GTS for more than 30 years. From these findings some guidance on optimizing the Antarctic observing and prediction systems could be developed.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...