ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (3)
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2016-01-20
    Description: The Southeast United States (US) might not have warmed as much as the rest of the country over the past 50-100 years. Providing an improved understanding of this potential anomaly, and specifically the roles played by aerosols, was one of the main goals for the Southeast Atmosphere Study (SAS). Natural emissions of ozone-and-aerosol-precursor gases such as isoprene and monoterpenes are high in the southeast of the US. In addition, anthropogenic emissions are significant inthe Southeast US and summertime photochemistry is rapid. The NOAA-led SENEX (Southeast Nexus) aircraft campaign was one of the major components of the SAS studyand was focused on studying the interactions between biogenic and anthropogenic emissions to form secondary pollutants. During SENEX, the NOAA WP-3D aircraft conducted 20 research flights between 27 May and 10 July 2013 based out of Smyrna, TN. Here we describe the experimental approach, the science goals and early results of the NOAA SENEX campaign. The aircraft, its capabilities and standard measurements are described. The instrument payload is summarized including detection limits, accuracy, precision and time resolutions for all gas-and-aerosol phase instruments. The inter-comparisons of compounds measured with multiple instruments on the NOAA WP-3D are presented and were almost all within the stated uncertainties. The SENEX flights included day- and nighttime flights in the Southeast as well as flights over areas with intense shale gas extraction (Marcellus, Fayetteville and Haynesville shale). We present one example flight on 16 June 2013, which was a daytime flight over the Atlanta region, where several crosswind transects of plumes from the city and nearby point sources, such as power plants, paper mills and landfills, were flown. The area around Atlanta has large biogenic isoprene emissions, which provided an excellent case for studying the interactions between biogenic and anthropogenic emissions. In this example flight, chemistry in and outside the Atlanta plumes was observed for several hours after emission. The analysis of this flight showcases the strategies implemented to answer some of the main SENEX science questions.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-06-26
    Description: The influence of nitrogen oxides (NO x) on daytime atmospheric oxidation cycles is well known, with clearly defined high- and low-NO x regimes. During the day, oxidation reactions - which contribute to the formation of secondary pollutants such as ozone - are proportional to NO x at low levels, and inversely proportional to NO x at high levels. Night-time oxidation of volatile organic compounds also influences secondary pollutants but lacks a similar clear definition of high- and low-NO x regimes, even though such regimes exist. Decreases in anthropogenic NO x emissions in the US and Europe coincided with increases in Asia over the last 10 to 20 years, and have altered both daytime and nocturnal oxidation cycles. Here we present measurements of chemical species in the lower atmosphere from day- and night-time research flights over the southeast US in 1999 and 2013, supplemented by atmospheric chemistry simulations. We find that night-time oxidation of biogenic volatile organic compounds (BVOC) is NO x -limited when the ratio of NO x to BVOC is below approximately 0.5, and becomes independent of NO x at higher ratios. The night-time ratio of NO x to BVOC in 2013 averaged 0.6 aloft. We suggest that night-time oxidation in the southeast US is in transition between NO x -dominated and ozone-dominated.
    Print ISSN: 1752-0894
    Electronic ISSN: 1752-0908
    Topics: Geosciences
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: Natural emissions of ozone-and-aerosol-precursor gases such as isoprene and monoterpenes are high in the southeastern US. In addition, anthropogenic emissions are significant in the southeastern US and summertime photochemistry is rapid. The NOAA-led SENEX (Southeast Nexus) aircraft campaign was one of the major components of the Southeast Atmosphere Study (SAS) and was focused on studying the interactions between biogenic and anthropogenic emissions to form secondary pollutants. During SENEX, the NOAA WP-3D aircraft conducted 20 research flights between 27 May and 10 July 2013 based out of Smyrna, TN. Here we describe the experimental approach, the science goals and early results of the NOAA SENEX campaign. The aircraft, its capabilities and standard measurements are described. The instrument payload is summarized including detection limits, accuracy, precision and time resolutions for all gas-and-aerosol phase instruments. The inter-comparisons of compounds measured with multiple instruments on the NOAA WP-3D are presented and were all within the stated uncertainties, except two of the three NO2 measurements. The SENEX flights included day- and nighttime flights in the southeastern US as well as flights over areas with intense shale gas extraction (Marcellus, Fayetteville and Haynesville shale). We present one example flight on 16 June 2013, which was a daytime flight over the Atlanta region, where several crosswind transects of plumes from the city and nearby point sources, such as power plants, paper mills and landfills, were flown. The area around Atlanta has large biogenic isoprene emissions, which provided an excellent case for studying the interactions between biogenic and anthropogenic emissions. In this example flight, chemistry in and outside the Atlanta plumes was observed for several hours after emission. The analysis of this flight showcases the strategies implemented to answer some of the main SENEX science questions.
    Keywords: Geosciences (General)
    Type: GSFC-E-DAA-TN41632 , Atmospheric Measurement Techniques (ISSN 1867-1381) (e-ISSN 1867-8548); 9; 7; 3063-3093
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...