ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-10-26
    Description: The most comprehensive studies of the spatial and temporal scales of diffusivity rely on internal wave parameterizations that require knowledge of finescale shear and strain. Studies lacking either shear or strain measurements have to assume a constant ratio between shear and strain (Rω). Data from 14 moorings collected during five field programs are examined to determine the spatial and temporal patterns in Rω and the influence of these patterns on parameterized diffusivity. Time-mean Rω ranges from 1 to 10, with changes of order 10 observed over a broad range of scales. Temporal variability in Rω is observed at daily, weekly, and monthly scales. Observed changes in Rω could produce a 2–3 times change in parameterized diffusivity. Vertical profiles of Rω, Eshear, and Estrain (shear or strain variance relative to Garret–Munk) reveal that both local topographic properties and wind variability impact the internal wave field. Time series of Rω from each mooring have strong correlations to either shear or strain, often only at a specific range of vertical wavenumbers. Sites fall into two categories, in which Rω variability is dominated by either shear or strain. Linear fits to the dominant property (i.e., shear or strain) can be used to estimate a time series of Rω that has an RMS error that is 30% less than the RMS error from assuming Rω = 3. Shear and strain level vary in concert, as predicted by the Garret–Munk model, at high Eshear values. However, at Eshear 〈 5, strain variations are 3 times weaker than shear.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-07-25
    Description: The abyssal flow of water through the Samoan Passage accounts for the majority of the bottom water renewal in the North Pacific, thereby making it an important element of the meridional overturning circulation. Here the authors report recent measurements of the flow of dense waters of Antarctic and North Atlantic origin through the Samoan Passage. A 15-month long moored time series of velocity and temperature of the abyssal flow was recorded between 2012 and 2013. This allows for an update of the only prior volume transport time series from the Samoan Passage from WOCE moored measurements between 1992 and 1994. While highly variable on multiple time scales, the overall pattern of the abyssal flow through the Samoan Passage was remarkably steady. The time-mean northward volume transport of about 5.4 Sv (1 Sv ≡ 106 m3 s−1) in 2012/13 was reduced compared to 6.0 Sv measured between 1992 and 1994. This volume transport reduction is significant within 68% confidence limits (±0.4 Sv) but not at 95% confidence limits (±0.6 Sv). In agreement with recent studies of the abyssal Pacific, the bottom flow through the Samoan Passage warmed significantly on average by 1 × 10−3°C yr−1 over the past two decades, as observed both in moored and shipboard hydrographic observations. While the warming reflects the recently observed increasing role of the deep oceans for heat uptake, decreasing flow through Samoan Passage may indicate a future weakening of this trend for the abyssal North Pacific.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-05-06
    Description: A global map of open-ocean mode-1 M2 internal tides is constructed using sea surface height (SSH) measurements from multiple satellite altimeters during 1992–2012, representing a 20-yr coherent internal tide field. A two-dimensional plane wave fit method is employed to 1) suppress mesoscale contamination by extracting internal tides with both spatial and temporal coherence and 2) separately resolve multiple internal tidal waves. Global maps of amplitude, phase, energy, and flux of mode-1 M2 internal tides are presented. The M2 internal tides are mainly generated over topographic features, including continental slopes, midocean ridges, and seamounts. Internal tidal beams of 100–300 km width are observed to propagate hundreds to thousands of kilometers. Multiwave interference of some degree is widespread because of the M2 internal tide’s numerous generation sites and long-range propagation. The M2 internal tide propagates across the critical latitudes for parametric subharmonic instability (28.8°S/N) with little energy loss, consistent with the 2006 Internal Waves across the Pacific (IWAP) field measurements. In the eastern Pacific Ocean, the M2 internal tide loses significant energy in propagating across the equator; in contrast, little energy loss is observed in the equatorial zones of the Atlantic, Indian, and western Pacific Oceans. Global integration of the satellite observations yields a total energy of 36 PJ (1 PJ = 1015 J) for all the coherent mode-1 M2 internal tides. Finally, satellite observed M2 internal tides compare favorably with field mooring measurements and a global eddy-resolving numerical model.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-02-01
    Description: Methods for measuring waves and winds from a Wave Glider autonomous surface vehicle (ASV) are described and evaluated. The wave method utilizes the frequency spectra of orbital velocities measured by GPS, and the wind stress method utilizes the frequency spectra of turbulent wind fluctuations measured by an ultrasonic anemometer. Both methods evaluate contaminations from vehicle motion. The methods were evaluated with 68 days of data over a full range of open ocean conditions, in which wave heights varied from 1 to 8 m and wind speeds varied from 1 to 17 m s−1. Reference data were collected using additional sensors on board the vehicle. For the waves method, several additional datasets are included that use independently moored Datawell Waverider buoys as reference data. Bulk wave parameters are determined within 5% error with biases of less than 5%. Wind stress is determined within 4% error with 1% bias. Wave directional spectra also compare well, although the Wave Glider results have more spread at low frequencies.
    Print ISSN: 0739-0572
    Electronic ISSN: 1520-0426
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-03-28
    Description: Lee waves are thought to play a prominent role in Southern Ocean dynamics, facilitating a transfer of energy from the jets of the Antarctic Circumpolar Current to microscale, turbulent motions important in water mass transformations. Two EM-APEX profiling floats deployed in the Drake Passage during the Diapycnal and Isopycnal Mixing Experiment (DIMES) independently measured a 120 ± 20-m vertical amplitude lee wave over the Shackleton Fracture Zone. A model for steady EM-APEX motion is developed to calculate absolute vertical water velocity, augmenting the horizontal velocity measurements made by the floats. The wave exhibits fluctuations in all three velocity components of over 15 cm s−1 and an intrinsic frequency close to the local buoyancy frequency. The wave is observed to transport energy and horizontal momentum vertically at respective peak rates of 1.3 ± 0.2 W m−2 and 8 ± 1 N m−2. The rate of turbulent kinetic energy dissipation is estimated using both Thorpe scales and a method that isolates high-frequency vertical kinetic energy and is found to be enhanced within the wave to values of order 10−7 W kg−1. The observed vertical flux of energy is significantly larger than expected from idealized numerical simulations and also larger than observed depth-integrated dissipation rates. These results provide the first unambiguous observation of a lee wave in the Southern Ocean with simultaneous measurements of its energetics and dynamics.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-03-01
    Description: Time series data from a mooring in the center of Denmark Strait and a collection of shipboard hydrographic sections occupied across the sill are used to elucidate the mesoscale variability of the dense overflow water in the strait. Two dominant, reoccurring features are identified that are referred to as a bolus and a pulse. A bolus is a large, weakly stratified lens of overflow water associated with cyclonic rotation and a modest increase in along-stream speed of 0.1 m s−1. When a bolus passes through the strait the interface height of the overflow layer increases by 60 m, and the bottom temperature decreases by 0.4°C. By contrast, a pulse is characterized by anticyclonic rotation, a strong increase in along-stream speed of 〉0.25 m s−1, a decrease in interface height of 90 m, and no significant bottom temperature signal. It is estimated that, on average, boluses (pulses) pass through the strait every 3.4 (5.4) days with no seasonal signal to their frequency. Both features have the strongest along-stream signal in the overflow layer, while the strongest cross-stream velocities occur above the Denmark Strait overflow water (DSOW). In this sense neither feature can be characterized as a simple propagating eddy. Their dynamics appear to be similar to that ascribed to the mesoscale variability observed downstream in the deep western boundary current. Strong correlation of bottom temperatures between the mooring in Denmark Strait and a downstream array, together with a match in the frequency of occurrence of features at both locations, suggests a causal relationship between the mesoscale variability at the sill and that farther downstream.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-05-21
    Description: We describe a process called “squeeze dispersion” in which the squeezing of oceanic tracer gradients by waves, eddies, and bathymetric flow modulates diapycnal diffusion by centimeter to meter-scale turbulence. Due to squeeze dispersion, the effective diapycnal diffusivity of oceanic tracers is different and typically greater than the average “local” diffusivity, especially when local diffusivity correlates with squeezing. We develop a theory to quantify the effects of squeeze dispersion on diapycnal oceanic transport, finding formulas that connect density-averaged tracer flux, locally measured diffusivity, large-scale oceanic strain, the thickness-weighted average buoyancy gradient, and the effective diffusivity of oceanic tracers. We use this effective diffusivity to interpret observations of abyssal flow through the Samoan Passage reported by Alford et al. (2013, https://doi.org/10.1002/grl.50684) and find that squeezing modulates diapycnal tracer dispersion by factors between 0.5 and 3. ©2019. American Geophysical Union. All Rights Reserved.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
  • 9
    Publication Date: 2015-02-01
    Description: Wind-forced internal waves close to the inertial frequency are ubiquitous throughout the world’s oceans, but observational constraints on their global energetics and impact on subsurface mixing remain scarce. This study reports on velocity measurements from three Electromagnetic Autonomous Profiling Explorers (EM-APEX) deployed in February 2009. These floats observed downward-propagating near-inertial internal waves near the Subantarctic and Polar Fronts of the Antarctic Circumpolar Current. These waves were episodic and enhanced at middepth between 500 and 1000 m. Depth-integrated kinetic energy varied between 1 and 7 kJ m−2 and averaged 1.6 kJ m−2 with typical group velocities of 40 m day−1, implying an average energy flux of 3 mW m−2 at the mixed layer base decreasing to approximately 25% of that value at 1500 m. Modeled currents forced by reanalysis winds along each float track agree with observed surface currents from EM-APEX, provided that mixed layer depth is restricted to the layer of weakest observable stratification (interpreted as the maximum depth that can remain mixed over an inertial period given the continual balance between mixing and restratification). This model estimates an average wind power of 3 mW m−2. Shipboard wind and current observations during a strong storm show an integrated wind work of 3.5 kJ m−2, comparable to the vertically integrated kinetic energy over the following month. Model wind work estimates are considerably less, likely because of the mixed layer depth used. A model with varying stratification in response to the wind provides a better match to the observations, emphasizing the importance of stratification within the mixed layer in amplifying wind energy input.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-02-01
    Description: The flow of dense water through the Samoan Passage accounts for the major part of the bottom water renewal in the North Pacific and is thus an important element of the Pacific meridional overturning circulation. A recent set of highly resolved measurements used CTD/LADCP, a microstructure profiler, and moorings to constrain the complex pathways and variability of the abyssal flow. Volume transport estimates for the dense northward current at several sections across the passage, calculated using direct velocity measurements from LADCPs, range from 3.9 × 106 to 6.0 × 106 ± 1 × 106 m3 s−1. The deep channel to the east and shallower pathways to the west carried about equal amounts of this volume transport, with the densest water flowing along the main eastern channel. Turbulent dissipation rates estimated from Thorpe scales and direct microstructure agree to within a factor of 2 and provide a region-averaged value of O(10−8) W kg−1 for layers colder than 0.8°C. Associated diapycnal diffusivities and downward turbulent heat fluxes are about 5 × 10−3 m2 s−1 and O(10) W m−2, respectively. However, heat budgets suggest heat fluxes 2–6 times greater. In the vicinity of one of the major sills of the passage, highly resolved Thorpe-inferred diffusivity and heat flux were over 10 times larger than the region-averaged values, suggesting the mismatch is likely due to undersampled mixing hotspots.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...