ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-02-13
    Description: Grid cells are neurons with periodic spatial receptive fields (grids) that tile two-dimensional space in a hexagonal pattern. To provide useful information about location, grids must be stably anchored to an external reference frame. The mechanisms underlying this anchoring process have remained elusive. Here we show in differently sized familiar square enclosures that the axes of the grids are offset from the walls by an angle that minimizes symmetry with the borders of the environment. This rotational offset is invariably accompanied by an elliptic distortion of the grid pattern. Reversing the ellipticity analytically by a shearing transformation removes the angular offset. This, together with the near-absence of rotation in novel environments, suggests that the rotation emerges through non-coaxial strain as a function of experience. The systematic relationship between rotation and distortion of the grid pattern points to shear forces arising from anchoring to specific geometric reference points as key elements of the mechanism for alignment of grid patterns to the external world.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stensola, Tor -- Stensola, Hanne -- Moser, May-Britt -- Moser, Edvard I -- England -- Nature. 2015 Feb 12;518(7538):207-12. doi: 10.1038/nature14151.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Olav Kyrres gate 9, 7491 Trondheim, Norway.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25673414" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; Brain Mapping ; Entorhinal Cortex/*cytology/physiology ; *Environment ; Male ; Models, Neurological ; Neurons/cytology/*physiology ; Orientation/*physiology ; Pattern Recognition, Visual/*physiology ; Rats ; Rats, Long-Evans ; Rotation ; Space Perception/*physiology ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-05-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Minderer, Matthias -- Harvey, Christopher D -- Donato, Flavio -- Moser, Edvard I -- England -- Nature. 2016 May 11;533(7603):324-5. doi: 10.1038/nature17899.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA. ; Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, 7491 Trondheim, Norway.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27193673" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-05-29
    Description: Spatial navigation requires information about the relationship between current and future positions. The activity of hippocampal neurons appears to reflect such a relationship, representing not only instantaneous position but also the path towards a goal location. However, how the hippocampus obtains information about goal direction is poorly understood. Here we report a prefrontal-thalamic neural circuit that is required for hippocampal representation of routes or trajectories through the environment. Trajectory-dependent firing was observed in medial prefrontal cortex, the nucleus reuniens of the thalamus, and the CA1 region of the hippocampus in rats. Lesioning or optogenetic silencing of the nucleus reuniens substantially reduced trajectory-dependent CA1 firing. Trajectory-dependent activity was almost absent in CA3, which does not receive nucleus reuniens input. The data suggest that projections from medial prefrontal cortex, via the nucleus reuniens, are crucial for representation of the future path during goal-directed behaviour and point to the thalamus as a key node in networks for long-range communication between cortical regions involved in navigation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ito, Hiroshi T -- Zhang, Sheng-Jia -- Witter, Menno P -- Moser, Edvard I -- Moser, May-Britt -- England -- Nature. 2015 Jun 4;522(7554):50-5. doi: 10.1038/nature14396. Epub 2015 May 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Olav Kyrres gate 9, MTFS, 7491 Trondheim, Norway.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26017312" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; CA1 Region, Hippocampal/cytology/*physiology ; CA3 Region, Hippocampal/cytology/physiology ; *Goals ; Male ; Maze Learning ; Midline Thalamic Nuclei/cytology/physiology ; Neural Pathways/*physiology ; Neurons/physiology ; Optogenetics ; Prefrontal Cortex/cytology/*physiology ; Rats ; Rats, Long-Evans ; Spatial Navigation/*physiology ; Thalamus/cytology/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-07-16
    Description: Grid cells in the medial entorhinal cortex have spatial firing fields that repeat periodically in a hexagonal pattern. When animals move, activity is translated between grid cells in accordance with the animal's displacement in the environment. For this translation to occur, grid cells must have continuous access to information about instantaneous running speed. However, a powerful entorhinal speed signal has not been identified. Here we show that running speed is represented in the firing rate of a ubiquitous but functionally dedicated population of entorhinal neurons distinct from other cell populations of the local circuit, such as grid, head-direction and border cells. These 'speed cells' are characterized by a context-invariant positive, linear response to running speed, and share with grid cells a prospective bias of approximately 50-80 ms. Our observations point to speed cells as a key component of the dynamic representation of self-location in the medial entorhinal cortex.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kropff, Emilio -- Carmichael, James E -- Moser, May-Britt -- Moser, Edvard I -- England -- Nature. 2015 Jul 23;523(7561):419-24. doi: 10.1038/nature14622. Epub 2015 Jul 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Olav Kyrres gate 9, MTFS, 7491 Trondheim, Norway [2] Leloir Institute, IIBBA - CONICET, Buenos Aires, C1405BWE, Argentina. ; Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Olav Kyrres gate 9, MTFS, 7491 Trondheim, Norway.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26176924" target="_blank"〉PubMed〈/a〉
    Keywords: Acceleration ; Action Potentials/physiology ; Animals ; Entorhinal Cortex/*cytology/*physiology ; Environment ; Male ; Models, Neurological ; Neurons/*physiology ; Rats ; Rats, Long-Evans ; Running/*physiology/*psychology ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2018
    Description: 〈p〉The hippocampal formation has long been suggested to underlie both memory formation and spatial navigation. We discuss how neural mechanisms identified in spatial navigation research operate across information domains to support a wide spectrum of cognitive functions. In our framework, place and grid cell population codes provide a representational format to map variable dimensions of cognitive spaces. This highly dynamic mapping system enables rapid reorganization of codes through remapping between orthogonal representations across behavioral contexts, yielding a multitude of stable cognitive spaces at different resolutions and hierarchical levels. Action sequences result in trajectories through cognitive space, which can be simulated via sequential coding in the hippocampus. In this way, the spatial representational format of the hippocampal formation has the capacity to support flexible cognition and behavior.〈/p〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2018-11-09
    Description: The hippocampal formation has long been suggested to underlie both memory formation and spatial navigation. We discuss how neural mechanisms identified in spatial navigation research operate across information domains to support a wide spectrum of cognitive functions. In our framework, place and grid cell population codes provide a representational format to map variable dimensions of cognitive spaces. This highly dynamic mapping system enables rapid reorganization of codes through remapping between orthogonal representations across behavioral contexts, yielding a multitude of stable cognitive spaces at different resolutions and hierarchical levels. Action sequences result in trajectories through cognitive space, which can be simulated via sequential coding in the hippocampus. In this way, the spatial representational format of the hippocampal formation has the capacity to support flexible cognition and behavior.
    Keywords: Neuroscience, Online Only
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...