ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: Develop and demonstrate technologies that will revolutionize commercial transport aircraft propulsion and accelerate development of all-electric aircraft architectures. Enable radically different propulsion systems that can meet national environmental and fuel burn reduction goals for subsonic commercial aircraft. Focus on future large regional jets and single-aisle twin (Boeing 737- class) aircraft for greatest impact on fuel burn, noise and emissions. Research horizon is long-term but with periodic spinoff of technologies for introduction in aircraft with more- and all-electric architectures. Research aligned with new NASA Aeronautics strategic R&T thrusts in areas of transition to low-carbon propulsion and ultra-efficient commercial transports.
    Keywords: Aircraft Propulsion and Power; Electronics and Electrical Engineering
    Type: ARC-E-DAA-TN27231 , ISABE 2015; Oct 25, 2015 - Oct 30, 2015; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Air transportation is critical to U.S. and Global economic vitality. However, energy and climate issues challenge aviations ability to be sustainable in the long term. Aviation must dramatically reduce fuel use and related emissions. Energy costs to U.S. airlines nearly tripled between 1995 and 2011, and continue to be the highest percentage of operating costs. The NASA Advanced Air Transports Technology Project addresses the comprehensive challenge of enabling revolutionary energy efficiency improvements in subsonic transport aircraft combined with dramatic reductions in harmful emissions and perceived noise to facilitate sustained growth of the air transportation system. Advanced technologies and the development of unconventional aircraft systems offer the potential to achieve these improvements. The presentation will highlight the NASA vision of revolutionary systems and propulsion technologies needed to achieve these challenging goals. Specifically, the primary focus is on the N+3 generation; that is, vehicles that are three generations beyond the current state of the art, requiring mature technology solutions in the 2025-30 timeframe, which are envisioned as being powered by Hybrid Electric Propulsion Systems.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN23468 , AIAA Distinguished Lectureship; May 12, 2015; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: The benefits of electrified aircraft propulsion improves aircrafts like single aisle transports, enables new configurations of vertical take-off landing aircrafts and revitalizes the economic case for small short-range aircraft services. Future strategies and markets for supersonic and commercial transport are proposed.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN58749 , AIAA Propulsion & Energy Forum; Jul 09, 2018 - Jul 11, 2018; Cincinnati, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-09-20
    Description: Air transportation is critical to U.S. and Global economic vitality. However, energy and climate issues challenge aviation's ability to be sustainable in the long term. Aviation must dramatically reduce fuel use and related emissions. Energy costs to U.S. airlines nearly tripled between 1995 and 2011, and continue to be the highest percentage of operating costs. The NASA Advanced Air Transports Technology Project addresses the comprehensive challenge of enabling revolutionary energy efficiency improvements in subsonic transport aircraft combined with dramatic reductions in harmful emissions and perceived noise to facilitate sustained growth of the air transportation system. Advanced technologies and the development of unconventional aircraft systems offer the potential to achieve these improvements. The presentation will highlight the NASA vision of revolutionary systems and propulsion technologies needed to achieve these challenging goals. Specifically, the primary focus is on the N+3 generation; that is, vehicles that are three generations beyond the current state of the art, requiring mature technology solutions in the 2025-30 timeframe.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN20707 , OSU Aerospace Graduate Student Seminar; Jan 30, 2015; Columbus, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: Presentation to Aerospace Electrical Systems Expo, providing an overview of NASA's work on hybrid electric and all electric propulsion and projecting technology needs.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN23587 , Aerospace Electrical Systems Expo 2015; May 19, 2015 - May 21, 2015; Long Beach, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Air Transportation and Safety; Aeronautics (General)
    Type: GRC-E-DAA-TN41532 , Center Visit by Aeronautics Safety Advisory Panel; Apr 05, 2017 - Apr 06, 2017; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...