ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-07-08
    Description: Balancer chromosomes are multiply inverted chromosomes that suppress meiotic crossing over and prevent the recovery of crossover products. Balancers are commonly used in Drosophila melanogaster to maintain deleterious alleles and in stock construction. They exist for all three major chromosomes, yet the molecular location of the breakpoints and the exact nature of many of the mutations carried by the second and third chromosome balancers has not been available. Here, we precisely locate eight of 10 of the breakpoints on the third chromosome balancer TM3 , six of eight on TM6 , and nine of 11 breakpoints on TM6B . We find that one of the inversion breakpoints on TM3 bisects the highly conserved tumor suppressor gene p53 —a finding that may have important consequences for a wide range of studies in Drosophila . We also identify evidence of single and double crossovers between several TM3 and TM6B balancers and their normal-sequence homologs that have created genetic diversity among these chromosomes. Overall, this work demonstrates the practical importance of precisely identifying the position of inversion breakpoints of balancer chromosomes and characterizing the mutant alleles carried by them.
    Electronic ISSN: 2160-1836
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-03-09
    Description: Multiply inverted balancer chromosomes that suppress exchange with their homologs are an essential part of the Drosophila melanogaster genetic toolkit. Despite their widespread use, the organization of balancer chromosomes has not been characterized at the molecular level, and the degree of sequence variation among copies of balancer chromosomes is unknown....
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-03-29
    Description: Balancer chromosomes are multiply inverted and rearranged chromosomes used in Drosophila melanogaster for many tasks, such as maintaining mutant alleles in stock and complex stock construction. Balancers were created before molecular characterization of their breakpoints was possible, so the precise locations of many of these breakpoints are unknown. Here, we report or confirm the positions of the 14 euchromatic breakpoints on the 2 nd chromosome balancers SM1 , SM5 , CyO , and SM6a . This total includes three breakpoints involved in a complex rearrangement on SM5 that is associated with the duplication of two genomic regions. Unbiased sequencing of several balancers allowed us to identify stocks with incorrectly identified balancers as well as single and double crossover events that had occurred between 2 nd chromosome balancers and their homologs. The confirmed crossover events that we recovered were at least 2 Mb from the closest inversion breakpoint, consistent with observations from other balancer chromosomes. Balancer chromosomes differ from one another both by large tracts of sequence diversity generated by recombination and by small differences, such as single nucleotide polymorphisms (SNPs). Therefore, we also report loss-of-function mutations carried by these chromosomes and unique SNP and InDel polymorphisms present on only single balancers. These findings provide valuable information about the structure of commonly used 2 nd chromosome balancers and extend recent work examining the structure of X and 3 rd chromosome balancers. Finally, these observations provide new insights into how the sequences of individual balancers have diverged over time.
    Electronic ISSN: 2160-1836
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2018-06-08
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-01-05
    Description: Studies in model organisms have yielded considerable insights into the etiology of disease and our understanding of evolutionary processes. Caenorhabditis elegans is among the most powerful model organisms used to understand biology. However, C. elegans is not used as extensively as other model organisms to investigate how natural variation shapes traits, especially through the use of genome-wide association (GWA) analyses. Here, we introduce a new platform, the C. elegans Natural Diversity Resource (CeNDR) to enable statistical genetics and genomics studies of C. elegans and to connect the results to human disease. CeNDR provides the research community with wild strains, genome-wide sequence and variant data for every strain, and a GWA mapping portal for studying natural variation in C. elegans . Additionally, researchers outside of the C. elegans community can benefit from public mappings and integrated tools for comparative analyses. CeNDR uses several databases that are continually updated through the addition of new strains, sequencing data, and association mapping results. The CeNDR data are accessible through a freely available web portal located at http://www.elegansvariation.org or through an application programming interface.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...