ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (3)
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2016-12-26
    Description: Large earthquakes are usually assumed to release all of the strain accumulated since the previous event, implying a reduced seismic hazard after them. However, long records of seismic history at several subduction zones suggest supercycle behaviour, where centuries-long accumulated strain is released through clustered large earthquakes, resulting in an extended period of enhanced seismic hazard. Here we combine historical seismology results, present-day geodesy data, and dense local observations of the recent M w 7.8 2016 Pedernales earthquake to reconstruct the strain budget at the Ecuador subduction zone since the great 1906 earthquake. We show that the Pedernales earthquake involved the successive rupture of two patches on the plate interface that were locked prior to the earthquake and most probably overlaps the area already ruptured in 1942 by a similar earthquake. However, we find that coseismic slip in 2016 exceeds the deficit accumulated since 1942. The seismic moment of every large earthquake during the twentieth century further exceeds the moment deficit accumulated since 1906. These results, together with the seismic quiescence before 1906 highlighted by historical records and marine palaeoseismology, argue for an earthquake supercycle at the Ecuador-Colombia margin. This behaviour, which has led to an enhanced seismic hazard for 110 years, is possibly still going on and may apply to other subduction zones that recently experienced a great earthquake. © 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
    Print ISSN: 1752-0894
    Electronic ISSN: 1752-0908
    Topics: Geosciences
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-01
    Description: We characterise the aftershock sequence following the 2016 Mw = 7.8 Pedernales earthquake. More than 10,000 events were detected and located, with magnitudes up to 6.9. Most of the aftershock seismicity results from interplate thrust faulting, but we also observe a few normal and strike-slip mechanisms. Seismicity extends for more than 300 km along strike, and is constrained between the trench and the maximum depth of the coseismic rupture. The most striking feature is the presence of three seismicity bands, perpendicular to the trench, which are also observed during the interseismic period. Additionally, we observe a linear dependency between the temporal evolution of afterslip and aftershocks. We also find a temporal semi-logarithmic expansion of aftershock seismicity along strike and dip directions, further indicating that their occurrence is modulated by afterslip. Lastly, we observe that the spatial distribution of seismic and aseismic slip processes is correlated to the distribution of bathymetric anomalies associated with the northern flank of the Carnegie Ridge, suggesting that slip in the area could be influenced by the relief of the subducting seafloor. To explain our observations, we propose a conceptual model in which the Ecuadorian margin is subject to a bimodal slip mode, with distributed seismic and aseismic slip mechanically controlled by the subduction of a rough oceanic relief. Our study sheds new light on the mechanics of subduction, relevant for convergent margins with a complex and heterogeneous structure such as the Ecuadorian margin.
    Print ISSN: 0012-821X
    Electronic ISSN: 1385-013X
    Topics: Geosciences , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-01-31
    Description: We characterise the aftershock sequence following the 2016 Mw=7.8 Pedernales earthquake. More than 10,000 events were detected and located, with magnitudes up to 6.9. Most of the aftershock seismicity results from interplate thrust faulting, but we also observe a few normal and strike-slip mechanisms. Seismicity extends for more than 300 km along strike, and is constrained between the trench and the maximum depth of the coseismic rupture. The most striking feature is the presence of three seismicity bands, perpendicular to the trench, which are also observed during the interseismic period. Additionally, we observe a linear dependency between the temporal evolution of afterslip and aftershocks. We also find a temporal semi-logarithmic expansion of aftershock seismicity along strike and dip directions, further indicating that their occurrence is modulated by afterslip. Lastly, we observe that the spatial distribution of seismic and aseismic slip processes is correlated to the distribution of bathymetric anomalies associated with the northern flank of the Carnegie Ridge, suggesting that slip in the area could be influenced by the relief of the subducting seafloor. To explain our observations, we propose a conceptual model in which the Ecuadorian margin is subject to a bimodal slip mode, with distributed seismic and aseismic slip mechanically controlled by the subduction of a rough oceanic relief. Our study sheds new light on the mechanics of subduction, relevant for convergent margins with a complex and heterogeneous structure such as the Ecuadorian margin.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...