ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Atmospheres 123 (2018): 1460–1477, doi:10.1002/2017JD027836.
    Description: Space-borne observations of CO2 are vital to gaining understanding of the carbon cycle in regions of the world that are difficult to measure directly, such as the tropical terrestrial biosphere, the high northern and southern latitudes, and in developing nations such as China. Measurements from passive instruments such as GOSAT and OCO-2, however, are constrained by solar zenith angle limitations as well as sensitivity to the presence of clouds and aerosols. Active measurements such as those in development for the Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS) mission show strong potential for making measurements in the high-latitude winter and in cloudy regions. In this work we examine the enhanced flux constraint provided by the improved coverage from an active measurement such as ASCENDS. The simulation studies presented here show that with sufficient precision, ASCENDS will detect permafrost thaw and fossil fuel emissions shifts at annual and seasonal time scales, even in the presence of transport errors, representativeness errors, and biogenic flux errors. While OCO-2 can detect some of these perturbations at the annual scale, the seasonal sampling provided by ASCENDS provides the stronger constraint.
    Description: NASA Grant Numbers: NNX15AJ27G, NNX15AH13G
    Description: 2018-07-29
    Keywords: ASCENDS ; OCO-2 ; Permafrost ; Carbon emissions ; Satellite remote sensing ; Fossil fuel
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-01-27
    Description: Space-borne observations of CO2 are vital to gaining understanding of the carbon cycle in regions of the world that are difficult to measure directly, such as the tropical terrestrial biosphere, the high northern and southern latitudes, and in developing nations such as China. Measurements from passive instruments such as GOSAT and OCO-2, however, are constrained by solar zenith angle limitations as well as sensitivity to the presence of clouds and aerosols. Active measurements such as those in development for the Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS) mission show strong potential for making measurements in the high-latitude winter and in cloudy regions. In this work we examine the enhanced flux constraint provided by the improved coverage from an active measurement such as ASCENDS. The simulation studies presented here show that with sufficient precision, ASCENDS will detect permafrost thaw and fossil fuel emissions shifts at annual and seasonal time scales, even in the presence of transport errors, representativeness errors, and biogenic flux errors. While OCO-2 can detect some of these perturbations at the annual scale, the seasonal sampling provided by ASCENDS provides the stronger constraint. ©2018. American Geophysical Union. All Rights Reserved.
    Print ISSN: 2169-897X
    Electronic ISSN: 2169-8996
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: The ASCENDS CarbonHawk Experiment Simulator (ACES) is a newly developed lidar developed at NASA Langley Research Center and funded by NASA's Earth Science Technology Office (ESTO) Instrument Incubator Program (IIP) that seeks to advance technologies critical to measuring atmospheric column carbon dioxide (CO2) mixing ratios in support of the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission. The technology advancements targeted include: (1) increasing the power-aperture product to approach ASCENDS mission requirements by implementing multi-aperture telescopes and multiple co-aligned laser transmitters; (2) incorporating high-efficiency, high-power Erbium-Doped Fiber Amplifiers (EDFAs); (3) developing and incorporating a high-bandwidth, low-noise HgCdTe detector and transimpedence amplifier (TIA) subsystem capable of long-duration autonomous operation on Global Hawk aircraft, and (4) advancing algorithms for cloud and aerosol discrimination. The ACES instrument architecture is being developed for operation on high-altitude aircraft and will be directly scalable to meet the ASCENDS mission requirements. These technologies are critical towards developing not only spaceborne instruments but also their airborne simulators, with lower platform requirements for size, mass, and power, and with improved instrument performance for the ASCENDS mission. ACES transmits five laser beams: three from commercial EDFAs operating near 1.57 microns, and two from the Exelis oxygen (O2) Raman fiber laser amplifier system operating near 1.26 microns. The three EDFAs are capable of transmitting up to 10 watts average optical output power each and are seeded by compact, low noise, stable, narrow-linewidth laser sources stabilized with respect to a CO2 absorption line using a multi-pass gas absorption cell. The Integrated-Path Differential Absorption (IPDA) lidar approach is used at both wavelengths to independently measure the CO2 and O2 column number densities and retrieve the average column CO2 mixing ratio. The ACES receiver uses three fiber-coupled 17.8-cm diameter athermal telescopes. The transmitter assembly consists of five fiber-coupled laser collimators and an associated Risley prism pair for each laser to co-align the outgoing laser beams and to align them with the telescope field of view. The backscattered return signals collected by the three telescopes are combined in a fiber bundle and sent to a single low noise detector. The detector/TIA development has improved the existing detector subsystem by increasing its bandwidth to 4.7 MHz from 500 kHz and increasing the duration of autonomous, service-free operation periods from 4 hours to 〉24 hours. The new detector subsystem enables the utilization of higher laser modulation rates, which provides greater flexibility for implementing advanced thin-cloud discrimination algorithms as well as improving range-determination resolution and error reduction. The cloud/aerosol discrimination algorithm development by Langley and Exelis features a new suite of algorithms for the minimization/elimination of bias errors in the return signal induced by the presence of intervening thin clouds. Multiple laser modulation schemes are being tested in an effort to significantly mitigate the effects of thin clouds on the retrieved CO2 column amounts. Full instrument development concluded in the spring of 2014. After ground range tests of the instrument, ACES successfully completed six test flights on the Langley Hu-25 aircraft in July, 2014, and recorded data at multiple altitudes over land and ocean surfaces with and without intervening clouds. Preliminary results from these test flights will be presented in this paper.
    Keywords: Earth Resources and Remote Sensing
    Type: NF1676L-19517 , AMS Annual Meeting; Jan 04, 2015 - Jan 08, 2015; Phoenix, AZ; United States|Symposium on Lidar Atmospheric Applications: Space Borne Lidars; Jan 04, 2015 - Jan 08, 2015; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: High resolution in-situ CO2 measurements were recorded onboard the NASA P-3B during the DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) Field Campaigns during July 2011 over Washington DC/Baltimore, MD; January-February 2013 over the San Joaquin Valley, CA; September 2013 over Houston, TX; and July-August 2014 over Denver, CO. Each of these campaigns have approximately two hundred vertical soundings of CO2 within the lower troposphere (surface to about 5 kilometers) at 6-8 different sites in each of the urban areas. In this study, we used structure function analysis, which is a useful way to quantify spatial and temporal variability, by displaying differences with average observations, to evaluate the variability of CO2 in the 0-2 kilometers range (representative of the planetary boundary layer). These results can then be used to provide guidance in the development of science requirements for the future ASCENDS (Active Sensing of CO2 Emissions over Nights, Days, and Seasons) mission to measure near-surface CO2 variability in different urban areas. We also compare the observed in-situ CO2 variability with the variability of the CO2 column-averaged optical depths in the 0-1 kilometer and 0-3.5 kilometers altitude ranges in the four geographically different urban areas, using vertical weighting functions for potential future ASCENDS lidar CO2 sensors operating in the 1.57 and 2.05 millimeter measurement regions. In addition to determining the natural variability of CO2 near the surface and in the column, radiocarbon method using continuous CO2 and CO measurements are used to examine the variation of emission quantification between anthropogenic and biogenic sources in the DC/Maryland urban site.
    Keywords: Environment Pollution; Geophysics; Earth Resources and Remote Sensing
    Type: NF1676L-22200 , Fall Meeting AGU 2015; Dec 14, 2015 - Dec 18, 2015; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Earth Resources and Remote Sensing
    Type: NF1676L-21089 , SPIE Remote Sensing Conference; Sep 21, 2015 - Sep 24, 2015; Toulouse; France
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-11-28
    Description: The Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) CarbonHawk Experiment Simulator (ACES) is a NASA Langley Research Center instrument funded by NASAs Science Mission Directorate that seeks to advance technologies critical to measuring atmospheric column carbon dioxide (CO2) mixing ratios in support of the NASA ASCENDS mission. The ACES instrument, an Intensity-Modulated Continuous-Wave (IM-CW) lidar, was designed for high-altitude aircraft operations and can be directly applied to space instrumentation to meet the ASCENDS mission requirements. The ACES design demonstrates advanced technologies critical for developing an airborne simulator and spaceborne instrument with lower platform consumption of size, mass, and power, and with improved performance. ACES recently flew on the NASA DC-8 aircraft during the 2017 NASA ASCENDS/Arctic-Boreal Vulnerability Experiment (ABoVE) airborne measurement campaign to test ASCENDS-related technologies in the challenging Arctic environment. Data were collected over a wide variety of surface reflectivities, terrain, and atmospheric conditions during the campaigns 8 research flights. ACES also flew during the 2017 and 2018 Atmospheric Carbon and Transport America (ACT-America) Earth Venture Suborbital -2 (EVS-2) campaigns along with the primary ACT-America CO2 lidar, Harris Corporations Multi-Frequency Fiber Laser Lidar (MFLL). Regional CO2 distributions of the lower atmosphere were observed from the C-130 aircraft during the ACT-America campaigns in support of ACT-Americas science objectives. The airborne lidars provide unique data that complement the more traditional in situ sensors. This presentation shows the applications of CO2 lidars in meeting these science needs from airborne platforms and an eventual spacecraft.
    Keywords: Earth Resources and Remote Sensing
    Type: NF1676L-29689 , SPIE Remote Sensing 2018; Sep 10, 2018 - Sep 13, 2018; Berlin; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-14
    Description: Improved remote sensing observations of atmospheric carbon dioxide (CO2) are critically needed to quantify, monitor, and understand the Earth's carbon cycle and its evolution in a changing climate. The processes governing ocean and terrestrial carbon uptake remain poorly understood,especially in dynamic regions with large carbon stocks and strong vulnerability to climate change,for example, the tropical land biosphere, the northern hemisphere high latitudes, and the Southern Ocean. Because the passive spectrometers used by GOSAT (Greenhouse gases Observing SATellite) and OCO-2 (Orbiting Carbon Observatory-2) require sunlit and cloud-free conditions,current observations over these regions remain infrequent and are subject to biases. These short comings limit our ability to understand and predict the processes controlling the carbon cycle on regional to global scales.In contrast, active CO2 remote-sensing techniques allow accurate measurements to be taken day and night, over ocean and land surfaces, in the presence of thin or scattered clouds, and at all times of year. Because of these benefits, the National Research Council recommended the National Aeronautics and Space Administration (NASA) Active Sensing of CO2 Emissions over Nights,Days, and Seasons (ASCENDS) mission in the 2007 report Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond. The ability of ASCENDS to collect low-bias observations in these key regions is expected to address important gaps in our knowledge of the contemporary carbon cycle.The ASCENDS ad hoc Science Definition Team (SDT), comprised of carbon cycle modeling and active remote sensing instrument teams throughout the United States (US), worked to develop the mission's requirements and advance its readiness from 2008 through 2018. Numerous scientific investigations were carried out to identify the benefit and feasibility of active CO2 remote sensing measurements for improving our understanding of CO2 sources and sinks. This report summarizes their findings and recommendations based on mission modeling studies, analysis of ancillary meteorological data products, development and demonstration of candidate technologies, anddesign studies of the ASCENDS mission concept.
    Keywords: Geosciences (General)
    Type: NASA/TP?2018-219034 , GSFC-E-DAA-TN64573
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: Space-borne observations of CO2 are vital to gaining understanding of the carbon cycle in regions of the world that are difficult to measure directly, such as the tropical terrestrial biosphere, the high northern and southern latitudes, and in developing nations such as China. Measurements from passive instruments such as GOSAT (Greenhouse Gases Observing Satellite) and OCO-2 (Orbiting Carbon Observatory 2), however, are constrained by solar zenith angle limitations as well as sensitivity to the presence of clouds and aerosols. Active measurements such as those in development for the Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS) mission show strong potential for making measurements in the high-latitude winter and in cloudy regions. In this work we examine the enhanced flux constraint provided by the improved coverage from an active measurement such as ASCENDS. The simulation studies presented here show that with sufficient precision, ASCENDS will detect permafrost thaw and fossil fuel emissions shifts at annual and seasonal time scales, even in the presence of transport errors, representativeness errors, and biogenic flux errors. While OCO-2 can detect some of these perturbations at the annual scale, the seasonal sampling provided by ASCENDS provides the stronger constraint. Plain Language Summary: Active and passive remote sensors show the potential to provide unprecedented information on the carbon cycle. With the all-season sampling, active remote sensors are more capable of constraining high-latitude emissions. The reduced sensitivity to cloud and aerosol also makes active sensors more capable of providing information in cloudy and polluted scenes with sufficient accuracy. These experiments account for errors that are fundamental to the top-down approach for constraining emissions, and even including these sources of error, we show that satellite remote sensors are critical for understanding the carbon cycle.
    Keywords: Earth Resources and Remote Sensing; Environment Pollution
    Type: GSFC-E-DAA-TN55745 , Journal of Geophysical Research: Atmospheres (ISSN 2169-897X) (e-ISSN 2169-8996); 123; 2; 1460-1477
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...