ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (5)
Collection
Years
Year
  • 1
    Publication Date: 2015-03-26
    Description: Deep focus earthquakes within the underthrust Indian lower crust beneath the Himalaya occur in very specific regions and have distinct source characteristics. The study of the source mechanisms of these earthquakes provides valuable constraints on the kinematics of deformation of the underthrust Indian Plate, and its influence on the active deformation of the overlying Himalayan wedge. One of the most significant regions of these deep focus earthquakes is beneath the Sikkim and Bhutan Himalaya. We study the source characteristics of the 2011 September 18 ( M w 6.9) deep focus Sikkim main shock and its major aftershocks using global, regional and local waveform data. We determined the focal mechanism of the main shock using moment tensor inversion of global P and SH waveforms, and ascertained the earthquake fault plane using rupture directivity from regional P -wave spectra. The main shock originated at 53 ± 4 km depth and ruptured at least 20 km thickness of the underthrust Indian lower crust. Faulting occurred on a near vertical dextral strike-slip fault oriented NW-SE (strike 127°, dip 81° and rake 167°), oblique to the local strike of the Himalayan arc. The rupture initiated from the SE end of the fault and propagated to the northwest. The main shock was followed by 20 small-to-moderate aftershocks ( m b  〉 3.0), which we relocated using phase arrival times. We computed the focal mechanisms of the larger ones ( m b  ≥ 3.5) using local waveform inversion. We find that all aftershocks originated SE of the main shock, between depths of 12 and 50 km, and have dominantly strike-slip mechanisms. Our results, combined with the source mechanisms of earthquakes from previous studies, reveals that the entire underthrust Indian crust is seismogenic and deforms by dextral strike-slip motion on oblique structures beneath the Sikkim and Bhutan Himalaya. These active oblique structures with transverse motion possibly mark the western boundary of the clock-wise rotating ‘microplates’ in northeast India observed from GPS geodesy.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-03-29
    Description: Deep focus earthquakes within the underthrust Indian lower crust beneath the Himalaya occur in very specific regions and have distinct source characteristics. The study of the source mechanisms of these earthquakes provides valuable constraints on the kinematics of deformation of the underthrust Indian Plate, and its influence on the active deformation of the overlying Himalayan wedge. One of the most significant regions of these deep focus earthquakes is beneath the Sikkim and Bhutan Himalaya. We study the source characteristics of the 2011 September 18 ( M w 6.9) deep focus Sikkim main shock and its major aftershocks using global, regional and local waveform data. We determined the focal mechanism of the main shock using moment tensor inversion of global P and SH waveforms, and ascertained the earthquake fault plane using rupture directivity from regional P -wave spectra. The main shock originated at 53 ± 4 km depth and ruptured at least 20 km thickness of the underthrust Indian lower crust. Faulting occurred on a near vertical dextral strike-slip fault oriented NW-SE (strike 127°, dip 81° and rake 167°), oblique to the local strike of the Himalayan arc. The rupture initiated from the SE end of the fault and propagated to the northwest. The main shock was followed by 20 small-to-moderate aftershocks ( m b  〉 3.0), which we relocated using phase arrival times. We computed the focal mechanisms of the larger ones ( m b  ≥ 3.5) using local waveform inversion. We find that all aftershocks originated SE of the main shock, between depths of 12 and 50 km, and have dominantly strike-slip mechanisms. Our results, combined with the source mechanisms of earthquakes from previous studies, reveals that the entire underthrust Indian crust is seismogenic and deforms by dextral strike-slip motion on oblique structures beneath the Sikkim and Bhutan Himalaya. These active oblique structures with transverse motion possibly mark the western boundary of the clock-wise rotating ‘microplates’ in northeast India observed from GPS geodesy.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-01-25
    Description: Submerged recirculating jet mixing systems are an efficient and economical method of agitating large tanks with a high hydraulic residence time. Much work has been carried out in developing design correlations to aid the predictions of the mixing time in such systems, with the first such correlation being developed nearly 70 years ago. In most of these correlations, the mixing time depends directly on the volume of the vessel and inversely on the injection velocity of the submerged jet. This work demonstrates, for the first time, that the distance between the injection and suction nozzles also significantly affects the mixing time and can be used to control this time scale. The study introduces a non-dimensional quantity that can be used as an adjustable parameter in systems where such control is desired.
    Keywords: chemical engineering
    Electronic ISSN: 2054-5703
    Topics: Natural Sciences in General
    Published by Royal Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-03-01
    Description: Solutions of P-SV equations of motion in a homogeneous transversely isotropic elastic layer contain a factor exp(±νjz), where z is the vertical coordinate and j = 1, 2. For computing Rayleigh wave dispersion in a multi-layered half space, νj is computed at each layer. For a given phase velocity (c), νj becomes complex depending on the transversely isotropic parameters. When νj is complex, classical Rayleigh waves do not exist and generalised Rayleigh waves propagate along a path inclined to the interface. We use transversely isotropic parameters as αH, βV, ξ, ϕ and η and find their limits beyond which νj becomes complex. It is seen that νj depends on ϕ and η, but does not depend on ξ. The complex νj occurs when ϕ is small and η is large. For a given c/βV, the region of complex νj in a ϕ -η plane increases with the increase of αH/βV. Further, for a given αH/βV, the complex region of νj increases significantly with the decrease of c/βV. This study is useful to compute dispersion parameters of Rayleigh waves in a layered medium. © 2016, Springer Science+Business Media Dordrecht.
    Print ISSN: 1383-4649
    Electronic ISSN: 1573-157X
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-06-30
    Description: We consider a transversely isotropic medium with vertical axis of symmetry (VTI). Rayleigh wave displacement components in a homogeneous VTI medium contain exp(±krjz), where z is the vertical coordinate, k is the wave number, and j = 1, 2; rj may be considered as depth-decay factor. In a VTI medium, rj can be a real or imaginary as in an isotropic medium, or it can be a complex depending on the elastic parameters of the VTI medium; if complex, r1 and r2 are complex conjugates. In a homogeneous VTI half space, Rayleigh wave displacement is significantly modified with a phase shift when rj changes from real to complex with variation of VTI parameters; at the transition, the displacement becomes zero when r1 = r2. In a liquid layer over a VTI half space, Rayleigh waves are dispersive. Here, also Rayleigh wave displacement significantly modified with a phase shift when rj changes from real to complex with a decrease of period. At very low period, phase velocity of Rayleigh waves becomes less than P-wave velocity in the liquid layer giving rise to Scholte waves (interface waves). The amplitudes of Scholte waves with a VTI half space are found to be significantly larger than those with an isotropic half space. © 2018, Springer Nature B.V.
    Print ISSN: 1383-4649
    Electronic ISSN: 1573-157X
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...