ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-01-01
    Description: Satellite meteorology is a relatively new branch of the atmospheric sciences. The field emerged in the late 1950s during the Cold War and built on the advances in rocketry after World War II. In less than 70 years, satellite observations have transformed the way scientists observe and study Earth. This paper discusses some of the key advances in our understanding of the energy and water cycles, weather forecasting, and atmospheric composition enabled by satellite observations. While progress truly has been an international achievement, in accord with a monograph observing the centennial of the American Meteorological Society, as well as limited space, the emphasis of this chapter is on the U.S. satellite effort.
    Print ISSN: 0065-9401
    Electronic ISSN: 1943-3646
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-02-01
    Description: Estimates of top of the atmosphere (TOA) radiative flux are essential for the understanding of Earth’s energy budget and climate system. Clouds, aerosols, water vapor, and ozone (O3) are among the most important atmospheric agents impacting the Earth’s short-wave (SW) radiation budget. There are several sensors in orbit that provide independent information related to these parameters. Having coincident information from these sensors is important for understanding their potential contributions. The A-train constellation of satellites provides a unique opportunity to analyze near-simultaneous data from several of these sensors. In this paper, retrievals of cloud/aerosols parameters and total column ozone (TCO) from the Aura Ozone Monitoring Instrument (OMI) have been collocated with the Aqua Clouds and Earth's Radiant Energy System (CERES) estimates of TOA SW flux (SWF). We use these data to develop a variety of neural networks that estimate TOA SWF globally over ocean and land using only OMI data as inputs. OMI-estimated TOA SWF reproduces the independent CERES data with high fidelity. The global mean daily TOA SWF calculated from OMI is consistently within ±1% of CERES throughout the year 2007. Application of our neural network to other ultraviolet sensors, both past and future, may provide unique estimates of TOA SWF. For example, the well-calibrated Total Ozone Mapping Spectrometer (TOMS) series could provide estimates of TOA SWF dating back to late 1978.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-03-23
    Description: Trends in the vertical distribution of ozone are reported and compared for a number of new and recently revised datasets. The amount of ozone-depleting compounds in the stratosphere (as measured by Equivalent Effective Stratospheric Chlorine – EESC) maximised in the second half of the 1990s. We therefore examine the trends in the periods before and after that peak to see if any change in trend is discernible in the ozone record. Prior to 1998, trends in the upper stratosphere (~ 45 km, 4 hPa) are found to be −5 to −10% per decade at mid-latitudes and closer to −5% per decade in the tropics. No trends are found in the mid-stratosphere (28 km, 30 hPa). Negative trends are seen in the lower stratosphere at mid-latitudes in both hemispheres and in the deep tropics. However it is hard to be categorical about the trends in the lower stratosphere for three reasons: (i) there are fewer measurements, (ii) the data quality is poorer, and (iii) the measurements in the 1990s are perturbed by aerosols from the Mt. Pinatubo eruption in 1991. These findings are similar to those reported previously even though the measurements for the two main satellite instruments (SBUV and SAGE II) and the ground-based Umkehr and ozonesonde stations have been revised. There is no sign of a continued negative trend in the upper stratosphere since 1998: instead there is a hint of an average positive trend of ~ 2% per decade in mid-latitudes and ~ 3% per decade in the tropics. The significance of these upward trends is investigated using different assumptions of the independence of the trend estimates found from different datasets. The averaged upward trends are significant if the trends derived from various datasets are assumed to be independent, but are generally not significant if the trends are not independent. This arises because many of the underlying measurement records are used in more than one merged dataset. At this point it is not possible to say which assumption is best. Including an estimate of the drift of the overall ozone observing system decreases the significance of the trends. The significance will become clearer as (i) more years are added to the observational record, (ii) further improvements are made to the historic ozone record (e.g. through algorithm development), and (iii) the data merging techniques are refined, particularly through a more rigorous treatment of uncertainties.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-06-18
    Description: An online version of the OMI (Ozone Monitoring Instrument) near-ultraviolet (UV) aerosol retrieval algorithm was developed to retrieve aerosol optical thickness (AOT) and single scattering albedo (SSA) based on the optimal estimation (OE) method. Instead of using the traditional look-up tables for radiative transfer calculations, it performs online radiative transfer calculations with the Vector Linearized Discrete Ordinate Radiative Transfer (VLIDORT) model to eliminate interpolation errors and improve stability. The OE-based algorithm has the merit of providing useful estimates of uncertainties simultaneously with the inversion products. The measurements and inversion products of the Distributed Regional Aerosol Gridded Observation Network campaign in Northeast Asia (DRAGON NE-Asia 2012) were used to validate the retrieved AOT and SSA. The retrieved AOT and SSA at 388 nm have a correlation with the Aerosol Robotic Network (AERONET) products that is comparable to or better than the correlation with the operational product during the campaign. The estimated retrieval noise and smoothing error perform well in representing the envelope curve of actual biases of AOT at 388 nm between the retrieved AOT and AERONET measurements. The forward model parameter errors were analyzed separately for both AOT and SSA retrievals. The surface albedo at 388 nm, the imaginary part of the refractive index at 354 nm, and the number fine mode fraction (FMF) were found to be the most important parameters affecting the retrieval accuracy of AOT, while FMF was the most important parameter for the SSA retrieval. The additional information provided with the retrievals, including the estimated error and degrees of freedom, is expected to be valuable for future studies.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-09-07
    Description: Trends in the vertical distribution of ozone are reported and compared for a number of new and recently revised data sets. The amount of ozone-depleting compounds in the stratosphere (as measured by equivalent effective stratospheric chlorine – EESC) was maximised in the second half of the 1990s. We examine the periods before and after the peak to see if any change in trend is discernible in the ozone record that might be attributable to a change in the EESC trend, though no attribution is attempted. Prior to 1998, trends in the upper stratosphere (~ 45 km, 4 hPa) are found to be −5 to −10 % per decade at mid-latitudes and closer to −5 % per decade in the tropics. No trends are found in the mid-stratosphere (28 km, 30 hPa). Negative trends are seen in the lower stratosphere at mid-latitudes in both hemispheres and in the deep tropics. However, it is hard to be categorical about the trends in the lower stratosphere for three reasons: (i) there are fewer measurements, (ii) the data quality is poorer, and (iii) the measurements in the 1990s are perturbed by aerosols from the Mt Pinatubo eruption in 1991. These findings are similar to those reported previously even though the measurements for the main satellite and ground-based records have been revised. There is no sign of a continued negative trend in the upper stratosphere since 1998: instead there is a hint of an average positive trend of ~ 2 % per decade in mid-latitudes and ~ 3 % per decade in the tropics. The significance of these upward trends is investigated using different assumptions of the independence of the trend estimates found from different data sets. The averaged upward trends are significant if the trends derived from various data sets are assumed to be independent (as in Pawson et al., 2014) but are generally not significant if the trends are not independent. This occurs because many of the underlying measurement records are used in more than one merged data set. At this point it is not possible to say which assumption is best. Including an estimate of the drift of the overall ozone observing system decreases the significance of the trends. The significance will become clearer as (i) more years are added to the observational record, (ii) further improvements are made to the historic ozone record (e.g. through algorithm development), and (iii) the data merging techniques are refined, particularly through a more rigorous treatment of uncertainties.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-03-17
    Description: The Gauss–Seidel limb scattering (GSLS) radiative transfer (RT) model simulates the transfer of solar radiation through the atmosphere and is imbedded in the retrieval algorithm used to process data from the Ozone Mapping and Profiler Suite (OMPS) limb profiler (LP), which was launched on the Suomi NPP satellite in October 2011. A previous version of this model has been compared with several other limb scattering RT models in previous studies, including Siro, MCC++, CDIPI, LIMBTRAN, SASKTRAN, VECTOR, and McSCIA. To address deficiencies in the GSLS radiance calculations revealed in earlier comparisons, several recent changes have been added that improve the accuracy and flexibility of the GSLS model, including 1. improved treatment of the variation of the extinction coefficient with altitude, both within atmospheric layers and above the nominal top of the atmosphere; 2. addition of multiple-scattering source function calculations at multiple solar zenith angles along the line of sight (LOS); 3. introduction of variable surface properties along the limb LOS, with minimal effort required to add variable atmospheric properties along the LOS as well; 4. addition of the ability to model multiple aerosol types within the model atmosphere. The model improvements 1 and 2 are verified by comparison to previously published results (using standard radiance tables whenever possible), demonstrating significant improvement in cases for which previous versions of the GSLS model performed poorly. The single-scattered radiance errors that were as high as 4% in earlier studies are now generally reduced to 0.3%, while total radiance errors generally decline from 10% to 1–3%. In all cases, the tangent height dependence of the GSLS radiance error is greatly reduced.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-01-18
    Description: An optimal-estimation(OE)-based aerosol retrieval algorithm using the OMI (Ozone Monitoring Instrument) near-ultraviolet observation was developed in this study. The OE-based algorithm has the merit of providing useful estimates of errors simultaneously with the inversion products. Furthermore, instead of using the traditional look-up tables for inversion, it performs online radiative transfer calculations with the VLIDORT (linearized pseudo-spherical vector discrete ordinate radiative transfer code) to eliminate interpolation errors and improve stability. The measurements and inversion products of the Distributed Regional Aerosol Gridded Observation Network campaign in northeast Asia (DRAGON NE-Asia 2012) were used to validate the retrieved aerosol optical thickness (AOT) and single scattering albedo (SSA). The retrieved AOT and SSA at 388 nm have a correlation with the Aerosol Robotic Network (AERONET) products that is comparable to or better than the correlation with the operational product during the campaign. The OE-based estimated error represented the variance of actual biases of AOT at 388 nm between the retrieval and AERONET measurements better than the operational error estimates. The forward model parameter errors were analyzed separately for both AOT and SSA retrievals. The surface reflectance at 388 nm, the imaginary part of the refractive index at 354 nm, and the number fine-mode fraction (FMF) were found to be the most important parameters affecting the retrieval accuracy of AOT, while FMF was the most important parameter for the SSA retrieval. The additional information provided with the retrievals, including the estimated error and degrees of freedom, is expected to be valuable for relevant studies. Detailed advantages of using the OE method were described and discussed in this paper.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-10-02
    Description: The Ozone Mapping and Profiler Suite Limb Profiler (OMPS/LP) ozone product requires the determination of cloud height for each event to establish the lower boundary of the profile for the retrieval algorithm. We have created a revised cloud detection algorithm for LP measurements that uses the spectral dependence of the vertical gradient in radiance between two wavelengths in the visible and near-IR spectral regions. This approach provides better discrimination between clouds and aerosols than results obtained using a single wavelength. Observed LP cloud height values show good agreement with coincident Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) measurements.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-06-08
    Description: One of the largest constraints to the retrieval of accurate ozone profiles from UV backscatter limb sounding sensors is altitude registration. Two methods, the Rayleigh Scattering Attitude Sensing (RSAS) and Absolute Radiance Residual Method (ARRM), have been developed to determine the altitude registration to the accuracy necessary for long-term ozone monitoring. The methods compare model calculations of radiances to measured radiances, and are independent of onboard tracking devices. RSAS determines absolute altitude errors, but because the method is susceptible to aerosol interference, it is limited to latitudes and time periods with minimal aerosols. ARRM can be applied across all seasons and altitudes. However, it is only appropriate for relative altitude error estimates. The application of these methods to Ozone Mapping and Profiler Suite (OMPS) Limb Profiler (LP) measurements showed that, at launch, the OMPS LP instrument had a 1–2 km altitude registration error, resulting in a 50 % error in the derived ozone density at some altitudes. Though some of the error has been attributed to thermal shifts in the focal plane of the instrument, most of it appears to be due to misalignment of the spacecraft star trackers or the OMPS LP focal plane with respect to the spacecraft axes. In addition, there are ±200 m seasonally varying errors that could either be due to errors in the spacecraft pointing information or in the geopotential height (GPH) data that we use in our analysis.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: The OMPS Limb Profiling (LP) instrument was launched on NOAA's Suomi NPP (SNPP) weather satellite in October 2011. The instrument measures limb-scattered radiation in the ultraviolet, visible and NIR wavelengths with high vertical resolution (~2 km) and relatively dense spatial and temporal sampling (several thousand measurements/day covering the entire sunlit globe). These measurements have very high sensitivity to stratospheric aerosols due to long path of the incoming solar photons through the aerosol layer. However, unlike the recently launched ISS/SAGE III that directly measures extinction of solar/lunar radiation by gases and particles along the line of sight (LOS) of the instrument, information content of OMPS LP measurements is complex. It consists of solar radiation singly scattered and attenuated by aerosols, air, and trace gases along the LOS of the instrument, as well as diffuse upwelling radiation from the lower atmosphere that also gets scattered and attenuated into the LOS. To unscramble this complex signal one needs to have good knowledge of aerosol size distribution (ASD) and their complex refractive index. We will describe our recent efforts in constraining the ASD parameters by analyzing in-situ balloon data from Laramie, Wyoming; aerosol microphysical model data from CARMA; and spectral information provided by OMPS LP. We will also discuss our proposed methodology to rene this information by adjusting the microphysical properties of the aerosols to make data from various occultation and scattering instruments internally consistent. This is a generalized version of the technique employed by AERONET in which solar extinction data are combined with scattered radiation measured by the almucantar technique to determine aerosol particle shape, complex refractive index and size distribution. We suggest that such closure studies are essential to develop confidence in space-based data to validate aerosol microphysical models, such as CARMA, and aerosol chemistry- transport models, such as GOCART, and for estimating radiative forcing due to stratospheric aerosols in both volcanic and quiescent time periods.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN53537 , AGU Chapman Conference on Stratospheric Aerosol; Mar 18, 2018 - Mar 23, 2018; Puerto de la Cruz, Canary Islands; Spain
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...