ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (14)
  • 1
    Publication Date: 2015-08-12
    Description: N2O is an important greenhouse gas and the primary stratospheric ozone depleting substance. Its deleterious effects on the environment have prompted appeals to regulate emissions from agriculture, which represents the primary anthropogenic source in the global N2O budget. Successful implementation of mitigation strategies requires robust bottom-up inventories that are based...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-03-29
    Description: Medium Scale Traveling Ionospheric Disturbances (MSTIDs) are wave-like ionospheric perturbations routinely observed by high frequency radars. We focus on a class of MSTIDs observed during the winter daytime at high and mid latitudes. The source of these MSTIDs remains uncertain, with the two primary candidates being space weather and lower atmospheric processes. We surveyed observations from four high latitude and six mid latitude SuperDARN radars in the North American sector from November through May of 2012 to 2015. The MSTIDs observed have horizontal wavelengths between ∼150 to 650 km and horizontal velocities between ∼75 to 325 m s −1 . In local fall and winter seasons the majority of MSTIDs propagated equatorward, with bearings ranging from ∼125 ∘ to 225 ∘ geographic azimuth. No clear correlation with space weather activity as parameterized by A E and Sym-H could be identified. Rather, MSTID observations were found to have a strong correlation with polar vortex dynamics on two timescales. First, a seasonal timescale follows the annual development and decay of the polar vortex. Second, a shorter 2–4 week timescale again corresponds to synoptic polar vortex variability, including stratospheric warmings. Additionally, statistical analysis shows MSTIDs are more likely during periods of strong polar vortex. Direct comparison of the MSTID observations with stratospheric zonal winds suggests a wind filtering mechanism may be responsible for the strong correlation. Collectively, these observations suggest that polar atmospheric processes, rather than space weather activity, are primarily responsible for controlling the occurrence of high and mid latitude winter daytime MSTIDs.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-02-02
    Description: Over the last two decades, maps of GPS total electron content (TEC) have improved our understanding of the large perturbations in ionospheric electron density which occur during geomagnetic storms. However, previous regional and global studies of ionospheric storms have performed only a limited separation of storm-time, local time, longitudinal, and seasonal effects. Using 13 years of GPS TEC data, we present a complete statistical characterization of the ionospheric response to geomagnetic storms for midlatitudes in the North American sector where dense ground receiver coverage is available. The rapid onset of a positive phase is observed across much of the dayside and evening ionosphere followed by a longer-lasting negative phase across all latitudes and local times. Our results show clear seasonal variations in the storm-time TEC, such that summer events tend to be dominated by the negative storm response while winter events exhibit a stronger initial positive phase with minimal negative storm effects. We find no discernable difference between spring and fall equinox events with both being equivalent to the average storm-time response across all seasons. We also identify a prominent magnetic declination effect such that stronger dayside positive storm effects are observed in regions of negative declination (i.e., eastern North America). On the nightside, asymmetries in the TEC response are observed near the auroral oval and midlatitude trough which may be attributed to thermospheric zonal winds pushing plasma upward/downward along field lines of opposite declination.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019
    Description: Abstract In this study we have used 7 years (2011–2017) of quiet (Kp ≤ 2+) to moderately disturbed (Kp = 3) time nightside line‐of‐sight measurements from six midlatitude Super Dual Auroral Radar Network radars in the U.S. continent to characterize the subauroral convection in terms of magnetic latitude, magnetic local time, month, season, Kp, and the interplanetary magnetic field (IMF) clock angle. Our results show that (1) the quiet time (Kp ≤ 2+) subauroral flows are predominantly westward (20–90 m/s) in all months and become meridional (−20–20 m/s) near dawn and dusk, with the flows being the strongest and most structured in December and January. (2) The Kp dependency is prominent in all seasons such that for higher Kp the premidnight westward flow intensifies and the postmidnight eastward flow starts to emerge. (3) Sorting by IMF clock angle shows Bz+/Bz− features consistent with lower/higher Kp conditions, as expected, but also shows distinct differences that are associated with By sign. (4) There is a pronounced latitudinal variation in the zonal flow speed between 18 and 2 magnetic local time in winter (November to February) that exists under all IMF conditions but is most pronounced under IMF Bz− and higher Kp. Our analysis suggests that the quiet time subauroral flows are due to the combined effects of solar wind/magnetosphere coupling leading to penetration electric field and the neutral wind dynamo with the ionospheric conductivity modulating their relative dominance.
    Print ISSN: 2169-9380
    Electronic ISSN: 2169-9402
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-10-19
    Description: Countries are required to generate baselines of carbon emissions, or Forest Reference Emission Levels, for implementing REDD+ under the United Nations Framework Convention on Climate Change and to access results-based payments. Developing these baselines requires accurate maps of carbon stocks and historical deforestation. Global remote sensing products provide low-cost solutions for this information, but there has been little validation of these products at national scales. This study compares the ability of currently available products obtained from remote sensing data to deliver estimates of deforestation and associated carbon emissions in Guinea-Bissau, a West African country encompassing the climate and vegetation gradients that are typical of sub-Saharan Africa. We show that disagreements in estimates of deforestation are striking, and this variation leads to high uncertainty in derived emissions. For Guinea-Bissau, we suggest that higher temporal resolution of remote sens...
    Print ISSN: 1748-9318
    Electronic ISSN: 1748-9326
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-09-08
    Description: Trans-ionospheric radio signals in the high-latitude polar cap are susceptible to degradation when encountering sharp electron density gradients associated with discrete plasma structures, or patches. Multi-instrument measurements of polar cap patches are examined during a geomagnetic storm interval on 22 January 2012. For the first time, we monitor the transportation of patches with high spatial and temporal resolution across the polar cap for 1-2 hours using a combination of GPS total electron content (TEC), all-sky airglow imagers (ASIs), and SuperDARN HF radar backscatter. Simultaneous measurements from these datasets allow for continuous tracking of patch location, horizontal extent, and velocity despite adverse observational conditions for the primary technique (e.g., sunlit regions in the ASI data). Spatial collocation between patch-like features in relatively coarse but global GPS TEC measurements and those mapped by high-resolution ASI data was very good, indicating that GPS TEC can be applied to track patches continuously as they are transported across the polar cap. In contrast to previous observations of cigar-shaped patches formed under weakly disturbed conditions, the relatively narrow dawn-dusk extent of patches in the present interval (500-800 km) suggests association with a longitudinally-confined plasma source region, such as storm enhanced density (SED) plume. SuperDARN observations show that the backscatter power enhancements corresponded to the optical patches, and for the first time we demonstrate that the motion of the optical patches was consistent with background plasma convection velocities.
    Print ISSN: 0048-6604
    Electronic ISSN: 1944-799X
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-07-01
    Description: Spacecraft observations of boundary waves at the dayside terrestrial magnetopause and their ground-based signatures are presented. THEMIS spacecraft measured boundary waves at the magnetopause while ground-based HF radar measured corresponding signaturesin the ionosphere indicating a large scale response and tailward propagating waves. The properties of the oscillations are consistent with linear phase Kelvin-Helmholtz waves along the magnetopause boundary. During this time period multiple THEMIS spacecraft also measured a plasmaspheric plume contacting the local magnetopause and mass-loading the boundary. Previous work has demonstrated that increasing the density at the magnetopause can lower the efficiency of reconnection. Extending this further, present observations suggest that a plume can modulate instability processes such as the Kelvin-Helmholtz instability and allow them to form closer to the subsolar point along the magnetopause than without a plume. The current THEMIS observations from 21September 2010 are consistent with theory which predicts increasing the density at the boundary will lower the Kelvin-Helmholtz threshold and allow waves to form for a lower velocity shear.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-08-25
    Description: Ion drag is known to play an important role in driving neutral thermosphere circulation at auroral latitudes, especially during the main phase of geomagnetic storms. During the recovery phase, the neutrals are known to drive the ions and generate ionospheric electric fields and currents via the disturbance dynamo mechanism. At mid-latitudes, the precise interplay between ions and neutrals is less understood largely because of the paucity of measurements that have been available. In this work, weinvestigate ion-neutral coupling at middle latitudes using co-located ion drift velocity measurements obtained from SuperDARN radars and neutral wind velocity and temperature measurements obtained from the NATION Fabry-Perot interferometers. We examine one recent storm period on October 2-3, 2013 during both the main phase and late recovery phase. By using ion-neutral momentum exchange theory and a time-lagged correlation analysis, we analyze the coupling timescales and dominant driving mechanisms. We observe that during the main phase the neutrals respond to the ion convection on a timescale of ∼ 84 minutes which is significantly faster than what would be expected from local ion-drag momentum forcing alone. This suggests other storm time influences are important for driving the neutrals during the main phase, such as Joule heating. During the late recovery phase, the neutrals are observed to drive the ion convection without any significant time delay, consistent with the so-called “neutral fly wheel effect" or disturbance dynamo persisting well into the late recovery phase.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-03-25
    Description: We present simultaneous space and ground-based observations of Pi2 pulsations which occurred during a substorm on 25 September 2014. The timeline for this event starts at ∼ 06:04 UT when the THEMIS probe D located inside the plasmasphere detected Pi2 pulsations in the electric and magnetic fields. Cross-spectral analysis shows the azimuthal electric field and compressional magnetic field oscillated nearly in quadrature, highly suggestive of a standing fast-mode wave. Simultaneous Pi2 observations from dayside and nightside ground magnetometers at low latitudes indicate a global wave mode. A latitudinal magnetometer chain on the nightside observed a phase reversal in the H component of the Pi2 pulsations when crossing the footprint of the plasmapause, estimated from THEMIS spacecraft measurements. Spectral analysis of data from ground magnetometers in this latitudinal chain showed fundamental and second harmonic spectral peaks in their H and D components. Similar pulsation signatures at comparable harmonic frequencies were observed by three mid-latitude SuperDARN HF radars, both poleward and equatorward of the plasmapause ionospheric footprint. Finally, the longitudinal polarization pattern and azimuthal phase propagation of mid-latitude Pi2 pulsations are consistent with previous observations of a plasmaspheric virtual resonance being excited by a longitudinally localized source near midnight.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-06-01
    Description: The Sub-Auroral Polarization Streams (SAPS) are latitudinally narrow regions of westward-directed flows observed equatorward of the evening sector auroral oval. Previous studies have shown that SAPS generally occur during geomagnetically disturbed conditions and exhibit a strong dependence on geomagnetic activity. In this paper, we present the first comprehensive statistical study of SAPS using measurements from the US mid-latitude SuperDARN radars. The study period spans January 2011 to December 2014 and the results show that SuperDARN radars observe SAPS over a broad range of activity levels spanning storm-time and non-storm conditions. During relatively quiet conditions (-10 nT 〈 Dst 〈 10 nT) SAPS occur 15 % of the time and tend to be localized to the midnight sector and centered above 60° magnetic latitude. As the activity level increases, the peak SAPS location shifts equatorward and duskward. During moderately disturbed conditions (-75 nT 〈 Dst 〈 -50 nT) SAPS occur 87 % of the time and tend to be centered at 20 magnetic local time (MLT) and below 60° magnetic latitude. This behavior has been encoded into a new empirical model which uses Dst as input to estimate the probability of SAPS occurrence at a given magnetic latitude and MLT. Similar to some previous studies, the variation of SAPS speed with MLT is found to be nearly linear at low-moderate levels of geomagnetic activity but becomes increasingly non-linear near dusk sector as geomagnetic activity increases. We interpret this behavior as indicative of active ionosphere-thermosphere feedback playing an important role in modulating SAPS speeds.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...