ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-04-02
    Description: The pronounced temperature dependence of up-conversion luminescence from nanoparticles doped with rare-earth elements enables local temperature measurements. By mixing these nanoparticles into a commercially available photoresist containing the low-fluorescence photo-initiator Irgacure 369, and by using three-dimensional direct laser writing, we show that micrometer sized local temperature sensors can be positioned lithographically as desired. Positioning is possible in pre-structured environments, e.g., within buried microfluidic channels or on optical or electronic chips. We use the latter as an example and demonstrate the measurement for both free space and waveguide-coupled excitation and detection. For the free space setting, we achieve a temperature standard deviation of 0.5 K at a time resolution of 1 s.
    Print ISSN: 0003-6951
    Electronic ISSN: 1077-3118
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019
    Print ISSN: 1751-7362
    Electronic ISSN: 1751-7370
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-10-14
    Description: The article presents the analysis of usage of project management methodology in Tomsk Polytechnic University, in particular the experience with the course Project management which started 15 years ago. The article presents the discussion around advantages of project management methodology for engineering education and administration of the university in general and the problems impeding extensive implementation of this methodology in teaching, research and management in the university.
    Print ISSN: 1757-8981
    Electronic ISSN: 1757-899X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-10-22
    Description: Three new ruthenium alkylidene complexes (PCy 3 )Cl 2 (H 2 ITap)Ru=CHSPh ( 9 ), (DMAP) 2 Cl 2 (H 2 ITap)Ru=CHPh ( 11 ) and (DMAP) 2 Cl 2 (H 2 ITap)Ru=CHSPh ( 12 ) have been synthesized bearing the pH-responsive H 2 ITap ligand (H 2 ITap = 1,3-bis(2’,6’-dimethyl-4’-dimethylaminophenyl)-4,5-dihydroimidazol-2-ylidene). Catalysts 11 and 12 are additionally ligated by two pH-responsive DMAP ligands. The crystal structure was solved for complex 12 by X-ray diffraction. In organic, neutral solution, the catalysts are capable of performing standard ring-opening metathesis polymerization (ROMP) and ring closing metathesis (RCM) reactions with standard substrates. The ROMP with complex 11 is accelerated in the presence of two equiv of H 3 PO 4 , but is reduced as soon as the acid amount increased. The metathesis of phenylthiomethylidene catalysts 9 and 12 is sluggish at room temperature, but their ROMP can be dramatically accelerated at 60 °C. Complexes 11 and 12 are soluble in aqueous acid. They display the ability to perform RCM of diallylmalonic acid (DAMA), however, their conversions are very low amounting only to few turnovers before decomposition. However, both catalysts exhibit outstanding performance in the ROMP of dicyclopentadiene (DCPD) and mixtures of DCPD with cyclooctene (COE) in acidic aqueous microemulsion. With loadings as low as 180 ppm, the catalysts afforded mostly quantitative conversions of these monomers while maintaining the size and shape of the droplets throughout the polymerization process. Furthermore, the coagulate content for all experiments stayed 〈2%. This represents an unprecedented efficiency in emulsion ROMP based on hydrophilic ruthenium alkylidene complexes. Beilstein J. Org. Chem. 2015, 11, 1960–1972. doi:10.3762/bjoc.11.212
    Keywords: activationaqueous catalysisemulsionolefin metathesispolymerizationruthenium
    Electronic ISSN: 1860-5397
    Topics: Chemistry and Pharmacology
    Published by Beilstein-Institut
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-07-06
    Description: A wide spectrum of accounting frameworks and models is available to describe socioeconomic metabolism (SEM). Despite the common system of study, a large variety of terms and representations of that system are used by different models. This makes it difficult for practitioners to compare and choose a model or model combination that is fit for purpose. To facilitate model comparison, we analyze the system structure of material flow analysis (MFA); life cycle assessment (LCA); supply and use tables (SUTs); Leontief, Ghosh, and waste input-output analysis; integrated assessment models; and computable general equilibrium models. We show that the typical system structure of MFA and LCA is a directed graph. For the other models and some MFA and LCA studies, the system structure is a bipartite directed graph. We demonstrate that bipartite directed graphs and SUTs are equivalent representations of SEM. We show that the system structures of the models above are special cases of a general system structure, which models SEM as a bipartite graph . The general system structure includes industries, markets, the final use phase, products, waste, production factors, resources, and emissions. From the general system structure, we derive an accounting framework in the form of a generalized SUT. The general system structure facilitates the development of clear and unambiguous terminology across models. It helps to identify rules for the correct accounting of waste flows and stock changes. It facilitates model comparison and can serve as a blueprint for a model-independent database of SEM.
    Print ISSN: 1088-1980
    Electronic ISSN: 1530-9290
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-12-24
    Description: The complexity of data and methods in industrial ecology (IE) keeps growing, and the demand for comprehensive and interdisciplinary assessments increases. To keep up with this development, the field needs a data infrastructure that allows researchers to annotate, store, retrieve, combine, and exchange data at low cost, without loss of information, and across disciplines and model frameworks. A consensus-building debate about how to describe the common object of study, socioeconomic metabolism (SEM), is necessary for the development of practical data structures and databases. We review the definitions of basic concepts to describe SEM in IE and related fields such as integrated assessment modeling. We find that many definitions are not compatible, are implicit, and are sometimes lacking. To resolve the conflicts and inconsistencies within the current definitions, we propose a hierarchical system of terms and definitions, a practical ontology , for describing objects, their properties, and events in SEM. We propose a typology of object properties and use sets to group objects into a hierarchical, mutually exclusive, and collectively exhaustive (H-MECE) classification. This grouping leads to a general definition of stocks . We show that a MECE representation of events necessarily requires two complementary concepts: processes and flows , for which we propose general definitions based on sets. Using these definitions, we show that the system structure of any interdisciplinary model of SEM can be formulated as a directed graph . We propose guidelines for semantic data annotation and database design, which can help to turn the vision of a powerful data infrastructure for SEM research into reality.
    Print ISSN: 1088-1980
    Electronic ISSN: 1530-9290
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-10-01
    Print ISSN: 1088-1980
    Electronic ISSN: 1530-9290
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019
    Description: Abstract Until this day, data in industrial ecology (IE) have been commonly seen as existing within the domain of particular methods or models, such as input–output, life cycle assessment, urban metabolism, or material flow analysis data. This artificial division of data into methods contradicts the common phenomena described by those data: the objects and processes in the industrial system, or socioeconomic metabolism (SEM). A consequence of this scattered organization of related data across methods is that IE researchers and consultants spend too much time searching for and reformatting data from diverse and incoherent sources, time that could be invested into quality control and analysis of model results instead. This article outlines a solution to two major barriers to data exchange within IE: (a) the lack of a generic structure for IE data and (b) the lack of a bespoke platform to exchange IE datasets. We present a general data model for SEM that can be used to structure all data that can be located in the industrial system, including process descriptions, product descriptions, stocks, flows, and coefficients of all kind. We describe a relational database built on the general data model and a user interface to it, both of which are open source and can be implemented by individual researchers, groups, institutions, or the entire community. In the latter case, one could speak of an IE data commons (IEDC), and we unveil an IEDC prototype containing a diverse set of datasets from the literature.
    Print ISSN: 1088-1980
    Electronic ISSN: 1530-9290
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019
    Electronic ISSN: 2398-9629
    Topics: Biology
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018
    Description: Changes in national and global food demand are commonly explained by population growth, dietary shifts, and food waste. Although nutrition sciences demonstrate that biophysical characteristics determine food requirements in individuals, and medical and demographic studies provide evidence for large shifts in height, weight, and age structure worldwide, the aggregated effects for food demand are poorly understood. Here, a type–cohort–time stock model is applied to analyze the combined effect of biophysical and demographic changes in the adult population of 186 countries between 1975–2014. The average global adult in 2014 was 14% heavier, 1.3% taller, 6.2% older, and had a 6.1% higher energy demand than the average adult in 1975. Across countries, individuals’ weight gains ranged between 6–33%, and energy needs increased between 0.9–16%. Noteworthy, some of the highest and lowest increases coexist within Africa and Asia, signaling the disparities between the countries of these regions. Globally, food energy increased by 129% during the studied period. Population growth contributed with 116%; weight and height gains accounted for 15%; meanwhile, the aging phenomenon counteracted the rise in energy needs by −2%. This net additional 13% demand corresponded to the needs of 286 million adults. Since the effect of biodemographic changes are cumulative, we can expect the observed inertia to extend into the future. This work shows that considering the evolving individual biophysical characteristics jointly with sociodemographic changes can contribute to more robust global resource and food security assessments. Commonly used static and homogenous caloric demand values per capita might lead to misrepresentations of actual needs. What previous analyses could have estimated as increased food availability, sufficiency, or surplus waste might actually be energy sequestered by the mass of the human lot. Based on the discovered trends, feeding nine billion people in 2050 will require significantly more total calories than feeding the same people today.
    Electronic ISSN: 2071-1050
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...