ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019
    Description: Abstract To improve models of ground motion estimation and probabilistic seismic hazard analyses, the engineering seismology field is moving toward developing fully nonergodic ground motion models, models specific for individual source‐to‐site paths. Previous work on this topic has examined systematic variations in ground‐motion along particular paths (from either recorded or simulated earthquake data) and has not included physical properties of the path. We present here a framework to include physical path properties, by seeking correlations between ground motion amplitudes along specific paths and crustal properties, specifically seismic velocity and anelastic attenuation, along that path. Using a large data set of small‐magnitude earthquakes recorded in Southern California, we find a correlation between the gradient of seismic S wave velocity and the path term residual, after accounting for an average geometric spreading and anelastic attenuation, indicating that heterogeneity in crustal velocity primarily controls the path‐specific attenuation. Even in aseismic regions, details of path‐specific ground motion prediction equations can be developed from crustal structure and property data.
    Print ISSN: 2169-9313
    Electronic ISSN: 2169-9356
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-03-22
    Description: The basic physics of earthquakes is such that strong ground motion cannot be expected from an earthquake unless the earthquake itself is very close or has grown to be very large. We use simple seismological relationships to calculate the minimum time that must elapse before such ground motion can be expected at a distance from the earthquake, assuming that the earthquake magnitude is not predictable. Earthquake early warning (EEW) systems are in operation or development for many regions around the world, with the goal of providing enough warning of incoming ground shaking to allow people and automated systems to take protective actions to mitigate losses. However, the question of how much warning time is physically possible for specified levels of ground motion has not been addressed. We consider a zero-latency EEW system to determine possible warning times a user could receive in an ideal case. In this case, the only limitation on warning time is the time required for the earthquake to evolve and the time for strong ground motion to arrive at a user’s location. We find that users who wish to be alerted at lower ground motion thresholds will receive more robust warnings with longer average warning times than users who receive warnings for higher ground motion thresholds. EEW systems have the greatest potential benefit for users willing to take action at relatively low ground motion thresholds, whereas users who set relatively high thresholds for taking action are less likely to receive timely and actionable information.
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-05-30
    Description: Residuals between ground‐motion data and ground‐motion prediction equations (GMPEs) can be decomposed into terms representing earthquake source, path, and site effects. These terms can be cast in terms of repeatable (epistemic) residuals and the random (aleatory) components. Identifying the repeatable residuals leads to a GMPE with reduced uncertainty for a specific source, site, or path location, which in turn can yield a lower hazard level at small probabilities of exceedance. We illustrate a schematic framework for this residual partitioning with a dataset from the ANZA network, which straddles the central San Jacinto fault in southern California. The dataset consists of more than 3200 1.15≤M≤3 earthquakes and their peak ground accelerations (PGAs), recorded at close distances (⁠ R≤20  km ⁠). We construct a small‐magnitude GMPE for these PGA data, incorporating VS30 site conditions and geometrical spreading. Identification and removal of the repeatable source, path, and site terms yield an overall reduction in the standard deviation from 0.97 (in ln units) to 0.44, for a nonergodic assumption, that is, for a single‐source location, single site, and single path. We give examples of relationships between independent seismological observables and the repeatable terms. We find a correlation between location‐based source terms and stress drops in the San Jacinto fault zone region; an explanation of the site term as a function of kappa, the near‐site attenuation parameter; and a suggestion that the path component can be related directly to elastic structure. These correlations allow the repeatable source location, site, and path terms to be determined a priori using independent geophysical relationships. Those terms could be incorporated into location‐specific GMPEs for more accurate and precise ground‐motion prediction.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-01
    Print ISSN: 2169-9313
    Electronic ISSN: 2169-9356
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...