ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Lunar and Planetary Science and Exploration  (3)
  • 2015-2019  (3)
Collection
Keywords
Years
Year
  • 1
    Publication Date: 2019-07-20
    Description: The Mars Science Laboratory (MSL) Curiosity rover has spent the last two years investigating a prominent resistant ridge, informally named the Vera Rubin Ridge (VRR), at the base of Mount Sharp (Aeolis Mons). The ridge has been a high priority science target for the MSL mission since landing in Gale crater more than 6 years ago because of the detection of a strong hematite spectral signature, and its distinct topography. Examining the chemistry of the ridge can aid in determining the relationship to other rocks analyzed during the rover traverse, specifically the Murray formation (fm) encountered below the ridge. We can also determine compositional trends with elevation and/or laterally within the ridge, and whether spectral properties observed on the ridge, both from orbit and in situ, correspond with changes in chemistry. The composition of the ridge, combined with mineralogy of drilled samples, can help to elucidate bigger picture questions regarding depositional environment, possible changing lake water chemistry and diagenetic/alteration history.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-E-DAA-TN66081 , Lunar and Planetary Science Conference (LPSC); Mar 18, 2019 - Mar 22, 2019; Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-30
    Description: Characterizing the history of aqueous activity at the martian surface has been an objective of the Mars Exploration Rovers (MER) and the Mars Science Laboratory (MSL). Although the geologic context of the three landing sites are different, comparisons across the datasets can provide greater insight than using data from one mission alone. The Alpha Particle X-ray Spectrometer (APXS) is common to all three rovers (Spirit at Gusev crater, Opportunity at Meridiani Planum, and Curiosity at Gale crater) and provides a consistent basis for these comparisons. Soil and Dust: Fine grained basaltic soils and dust are remarkably uniform in chemical composition across multiple landing sites. These similarities in the concentrations of major, minor, and a few trace elements (Fig. 1) are indicative of planet-wide consistency in the composition of source materials for the soils. S and Cl vary by a factor of two in the soil and dust, but there is no clear association with any bulk cation (e.g., no correlation between S and total Ca, Mg, or Fe in soils). These volatile elements, however, are clearly associated with the nanophase-ferric iron component in the soil established by Mssbauer spectroscopy [1,2]. S and Cl likely originated as acidic species from volcanic out-gassing and subsequently coalesced on dust and sand grain surfaces, possibly with an affinity towards Fe3+ sites. Importantly, given the mobility of S and Cl in aqueous exposures, soil samples maintaining the typical molar S/Cl ratio of ~3.7:1 indicate minimal interactions with liquid water after the addition of S and Cl. In contrast to this well-established baseline, soil samples have been discovered at all three landing sites with atypical S/Cl ratios (e.g., subsurface soils), indicative of a more complex aqueous history.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-E-DAA-TN70395 , International Conference on Mars; Jul 22, 2019 - Jul 25, 2019; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-06
    Description: The S contents of rocks and soils are indicative of various alteration processes on Mars, e.g.[1]. It has been quantified along traverses at 4 landing sites Pathfinder, both MERs and MSL by the APXS [2,3]. At the MSL and MER sites, sulfur abundances, correlations with likely bound cations and other elements, and complementary mineralogical and textural data have provided important insights into alteration processes and periods of more habitable environments in the distant past.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-E-DAA-TN70393 , International Conference on Mars; Jul 22, 2019 - Jul 25, 2019; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...