ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Lunar and Planetary Science and Exploration  (9)
  • Space Sciences (General); Lunar and Planetary Science and Exploration  (1)
  • 2015-2019  (10)
Collection
Keywords
Years
Year
  • 1
    Publication Date: 2019-07-19
    Description: Recent geological discoveries from the Mars Science Laboratory provide evidence that Gale crater may have intermittently hosted a fluvio-lacustine environment during the Hesperian, with individual lakes lasting for a period of tens to hundreds of thousands of years. (Grotzinger et al., Science, 350 (6257), 2015). Estimates of the CO2 content of the atmosphere at the time the Gale sediments formed are far less than needed by any climate model to warm early Mars (Bristow et al., Geology, submitted), given the low solar energy input available at Mars 3.5 Gya. We have therefore explored the possibility that the lakes in Gale during the Hesperian were perennially covered with ice using the Antarctic Lakes as an analog. Using our best estimate for the annual mean surface temperature at Gale at this time (approx. 230K) we computed the thickness of an ice-covered lake. These thickness range from 10-30 meters depending on the ablation rate and ice transparency and would likely inhibit sediments from entering the lake. Thus, a first conclusion is that the ice must not be too cold. Raising the mean temperature to 245K is challenging, but not quite as hard as reaching 273K. We found that a mean annual temperature of 245K ice thicknesses range from 3-10 meters. These values are comparable to the range of those for the Antarctic lakes (3-6 m), and are not implausible. And they are not so thick that sediments cannot penetrate the ice. For the ice-covered lake hypothesis to work, however, a melt water source is needed. This could come from subaqueous melting of a glacial dam in contact with the lakes (as is the case for Lake Untersee) or from seasonal melt water from nearby glaciers (as is the case for the Dry Valley lakes). More work is needed to better assess these possibilities. However, the main advantage of the ice-covered lake model (and the main reason we pursued it) is that it relaxes the requirement for a long-lived active hydrological cycle involving rainfall and runoff, which no climate model is able to produce given known constraints on the early Mars environment.
    Keywords: Lunar and Planetary Science and Exploration
    Type: ARC-E-DAA-TN35932 , AAS Division of Planetary Science Meeting; Oct 16, 2016 - Oct 21, 2016; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-19
    Description: The dust and water cycles are critical to the current Martian climate, and they interact with each other through cloud formation. Dust modulates the thermal structure of the atmosphere and thus greatly influences atmospheric circulation. Clouds provide radiative forcing and control the net hemispheric transport of water through the alteration of the vertical distributions of water and dust. Recent advancements in the quality and sophistication of both climate models and observations enable an increased understanding of how the coupling between the dust and water cycles (through cloud formation) impacts the dust and water cycles. We focus here on the effects of clouds on the vertical distributions of dust and water and how those vertical distributions control the net meridional transport of water. We utilize observations of temperature, dust and water ice from the Mars Climate Sounder (MCS) on the Mars Reconnaissance Orbiter (MRO) and the NASA ARC Mars Global Climate Model (MGCM) to show that the magnitude and nature of the hemispheric exchange of water during NH summer is sensitive to the vertical structure of the simulated aphelion cloud belt. Further, we investigate how clouds influence atmospheric temperatures and thus the vertical structure of the cloud belt. Our goal is to isolate and understand the importance of radiative/dynamic feedbacks due to the physical processes involved with cloud formation and evolution on the current climate of Mars.
    Keywords: Lunar and Planetary Science and Exploration
    Type: ARC-E-DAA-TN27132 , Division for Planetary Sciences (DPS 2015) Meeting; Nov 08, 2015 - Nov 13, 2015; National Harbor, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-19
    Description: In place of the dual choice of warm and wet versus cold and dry Mars, we reconcile in this paper the notion of a cold Mars with the notion of wet Mars. Both the geological evidences at Gale's for the presence of liquid water during the Hesperian (Grotzinger et al., Science, 350 (6257), 2015) and the failure of climate models make Mars warm (Wordsworth, Review of Earth and Planetary Science, 44, 1-31, 2016) suggested that an alternative scenario could be envisioned. The lake Untersee, Antarctica is an inspiring example of how an aqueous environment can survive for an extended period of the time in a place where the day average temperatures never, ever, each 273K. The key process which maintains a liquid, potentially habitable, environment under the ice is the subaqueous melting of a glacial dam in contact with the lake which provides a constant latent heat flux into the lake (McKay et al, in preparation) Our calculations showed that for certain range of pressures, temperatures and ice optical properties, a large body of water at Gale's will not freeze solid even if the surface temperatures are at all times well below freezing. The rather high sublimation rates of ice at Mars', the sunlight penetrating the ice and the geothermal flux contribute to stabilize the solid/liquid interface at a certain depth. We found that for a mean annual temperature of 245K ice thicknesses range from 3-10 meters which are comparable values to the range of those for the Antarctic lakes (2-7m). Thus, the ice potentially gets thin enough to let sediments penetrate the ice (Rivera-Hernandez et al., in preparation) and geological features associated with aqueous environments may still be possible with a perennially-covered lake, on cold, but wet planet. The Antarctic lakes model is engaging as it relaxes the requirement for a long-lived active hydrological cycle.
    Keywords: Lunar and Planetary Science and Exploration
    Type: ARC-E-DAA-TN35035 , AGU 2016 Fall Meeting; Dec 12, 2016 - Dec 16, 2016; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: Reducing greenhouse gases are once again the latest trend in finding solutions to the early Mars climate dilemma. In its current form collision induced absorptions (CIA) involving H2 and/or CH4 provide enough extra greenhouse power in a predominately CO2 atmosphere to raise global mean surface temperatures to the melting point of water provided the atmosphere is thick enough and the reduced gases are abundant enough. Surface pressures must be at least 500 mb and H2 and/or CH4 concentrations must be at or above the several percent level for CIA to be effective. Atmospheres with 1-2 bars of CO2 and 2- 10% H2 can sustain surface environments favorable for liquid water. Smaller concentrations of H2 are sufficient if CH4 is also present. If thick CO2 atmospheres with percent level concentrations of reduced gases are the solution to the faint young Sun paradox for Mars, then plausible mechanisms must be found to generate and sustain the gases. Possible sources of reducing gases include volcanic outgassing, serpentinization, and impact delivery; sinks include photolyis, oxidation, and escape to space. The viability of the reduced greenhouse hypothesis depends, therefore, on the strength of these sources and sinks. In this paper we focus on impact delivered reduced gases.
    Keywords: Lunar and Planetary Science and Exploration
    Type: ARC-E-DAA-TN53310 , Lunar and Planetary Science Conference; Mar 19, 2018 - Mar 23, 2018; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: We analyze the complete set of in-situ meteorological data obtained from the Viking landers in the 1970s to todays Curiosity rover to review our understanding of the modern near-surface climate of Mars, with focus on the dust, CO2 and H2O cycles and their impact on the radiative and thermodynamic conditions near the surface. In particular, we provide values of the highest confidence possible for atmospheric opacity, atmospheric pressure, near-surface air temperature, ground temperature, near-surface wind speed and direction, and near-surface air relative humidity and water vapor content. Then, we study the diurnal, seasonal and interannual variability of these quantities over a span of more than twenty Martian years. Finally, we propose measurements to improve our understanding of the Martian dust and H2O cycles, and discuss the potential for liquid water formation under Mars present day conditions and its implications for future Mars missions.
    Keywords: Space Sciences (General); Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN41536 , Space Science Reviews (ISSN 0038-6308) (e-ISSN 1572-9672); 1-44
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-27
    Description: The abundance of evidence that liquid water flowed on the surface early in Mars' history strongly implies that the early Martian atmosphere was significantly more massive than it is today. While it seems clear that the total CO2 inventory was likely substantially larger in the past, the fundamental question about the physical state of that CO2 is not completely understood. Because the temperature at which CO2 condenses increases with surface pressure, surface CO2 ice is more likely to form and persist as the atmospheric mass increases. For the atmosphere to remain stable against collapse, there must be enough energy, distributed planet wide, to stave off the formation of permanent CO2 caps that leads to atmospheric collapse. The presence of a "faint young sun" that was likely about 25 percent less luminous 3.8 billion years ago than the sun today makes this even more difficult. Several physical processes play a role in the ultimate stability of a CO2 atmosphere. The system is regulated by the energy balance between solar insolation, the radiative effects of the atmosphere and its constituents, atmospheric heat transport, heat exchange between the surface and the atmosphere, and latent heating/cooling. Specific considerations in this balance for a given orbital obliquity/eccentricity and atmospheric mass are the albedo of the caps, the dust content of the atmosphere, and the presence of water and/or CO2 clouds. Forget et al. show that, for Mars' current obliquity (in a circular orbit), CO2 atmospheres ranging in surface pressure from 500 hectopascals to 3000 hectopascals would have been stable against collapsing into permanent surface ice reservoirs. Soto et al. examined a similar range in initial surface pressure to investigate atmospheric collapse and to compute collapse rates. CO2 clouds and their radiative effects were included in Forget et al. but they were not included in Soto et al. Here we focus on how CO2 clouds affect the stability of the atmosphere against collapse.
    Keywords: Lunar and Planetary Science and Exploration
    Type: ARC-E-DAA-TN46676 , International Conference on Early Mars: Geologic, Hydrologic, and Climatic Evolution and the Implications for Life; 2ý6 Oct. 2017; Flagstaff, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: The CO2 cycle is one of the three controlling climate cycles on Mars. One aspect of the CO2 cycle that is not yet fully understood is the existence of a residual CO2 ice cap that is offset from the south pole. Previous investigations suggest that the atmosphere may control the placement of the south residual cap (e.g., Colaprete et al., 2005). These investigations show that topographically forced stationary eddies in the south during southern hemisphere winter produce colder atmospheric temperatures and increased CO2 snowfall over the hemisphere where the residual cap resides. Since precipitated CO2 ice produces higher surface albedos than directly deposited CO2 ice, it is plausible that CO2 snowfall resulting from the zonally asymmetric atmospheric circulation produces surface ice albedos high enough to maintain a residual cap only in one hemisphere. The goal of the current work is to further evaluate Colaprete et al.'s hypothesis by investigating model-predicted seasonally varying snowfall patterns in the southern polar region and the atmospheric circulation components that control them.
    Keywords: Lunar and Planetary Science and Exploration
    Type: ARC-E-DAA-TN33840 , International Conference on Mars Polar Science and Exploration; Sep 05, 2016 - Sep 09, 2016; Reykjavik; Iceland
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: Extratropical, large-scale weather disturbances, namely transient, synoptic-period,baroclinic barotropic eddies - or - low- (high-) pressure cyclones (anticyclones), are components fundamental to global circulation patterns for rapidly rotating, differentially heated, shallow atmospheres such as Earth and Mars. Such "wave-like" disturbances that arise via (geophysical) fluid shear instability develop, mature and decay, and travel west-to-east in the middle and high latitudes within terrestrial-like planetary atmospheres. These disturbances serve as critical agents in the transport of heat and momentum between low and high latitudes of the planet. Moreover, they transport trace species within the atmosphere (e.g., water vapor/ice, other aerosols (dust), chemical species, etc). Between early autumn through early spring, middle and high latitudes on Mars exhibit strong equator-to-pole mean temperature contrasts (i.e., "baroclinicity"). Data collected during the Viking era and observations from both the Mars Global Surveyor (MGS) and Mars Reconnaissance Orbiter (MRO) indicate that such strong baroclinicity supports vigorous, large-scale eastward traveling weather systems [Banfield et al., 2004; Barnes et al., 1993]. A good example of traveling weather systems, frontal wave activity and sequestered dust activity from MGS/MOC image analyses is provided in Figure 1 (cf. Wang et al. [2005]). Utilizing an upgraded and evolving version of the NASA Ames Research Center (ARC) Mars global climate model, investigated here are key dynamical and physical aspects of simulated northern hemisphere (NH) large-scale extratropica lweather systems,with and without radiatively-active water ice clouds. Mars Climate Model:
    Keywords: Lunar and Planetary Science and Exploration
    Type: ARC-E-DAA-TN37600 , International Workshop on the Mars Atmosphere: Modeling and Observations; Jan 17, 2017 - Jan 20, 2017; Granada; Spain
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: Reducing greenhouse gases are once again the latest trend in finding solutions to the early Mars climate dilemma. In its current form - as proposed by Ramirez et al. [1], later refined by Wordsworth et al. [2], and confirmed by Ramirez [3] - collision induced absorptions between CO2-H2 or CO2-CH4 provide enough extra greenhouse power to raise global mean surface temperatures to the melting point of water provided the atmosphere is thick enough and the reduced gases are abundant enough. To raise surface temperatures significantly by this mechanism, surface pressures must be at least 500 mb and H2 and/or CH4 concentrations must be at or above the several percent level. Both Wordsworth et al. [2] and Ramirez [3] show that the melting point can be reached in atmospheres with 1-2 bars of CO2 and 2-10% H2; smaller concentrations of H2 will suffice if CH4 is also present. If thick weakly reducing atmospheres are the solution to the faint young Sun paradox, then plausible mechanisms must be found to generate and sustain the gases. Possible sources of reducing gases include volcanic outgassing, serpentinization, and impact delivery; sinks include photolyis, oxidation, and escape to space. The viability of the reduced greenhouse hypothesis depends, therefore, on the strength of these sources and sinks.
    Keywords: Lunar and Planetary Science and Exploration
    Type: ARC-E-DAA-TN45050 , International Conference on Early Mars: Geologic, Hydrologic, and Climate Evolution and the Implications for Life; Oct 02, 2017 - Oct 06, 2017; Flagstaff, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: While there is abundant evidence for flowing liquid water on the ancient Martian surface, a widely accepted greenhouse mechanism for explaining this in the presence of a faint young sun has yet to emerge. Gases such as NH3, CO2 alone, SO2, clouds, and CH4, have sustainability issues or limited greenhouse power. Recently, Ramirez et al. proposed that CO2-H2 atmospheres, through collision induced absorptions (CIA), could solve the problem if large amounts are present (1.3-4 bars of CO2, 50-20% H2). However, they had to estimate the strength of the H2- CO2 interaction from the measured strength of the H2- N2 interaction. Recent ab initio calculations show that the strength of CO2-H2 CIA is greater than Ramirez et al. assumed. Wordsworth et al. also calculated the absorption coefficients for CO2-CH4 CIA and show that on early Mars a 0.5 bar CO2 atmosphere with percent levels of H2 or CH4 can raise mean annual temperatures by tens of degrees Kelvin. Freezing temperatures can be reached in atmospheres containing 1-2 bars of CO2 and 2-10% H2 and CH4. The new work demonstrates that less CO2 and reduced gases are needed than Ramirez et al. originally proposed, which improves prospects for their hypothesis. If thick weakly reducing atmospheres are the solution to the faint young sun paradox, then plausible mechanisms must be found to generate and sustain the required concentrations of H2 and CH4. Possible sources of reducing gases include volcanic outgassing, serpentinization, and impact delivery; sinks include photolysis, oxidation, and hydrogen escape. The viability of the reduced greenhouse hypothesis depends, therefore, on the strength of these sources and sinks.
    Keywords: Lunar and Planetary Science and Exploration
    Type: ARC-E-DAA-TN38660 , Lunar and Planetary Science Conference; Mar 20, 2017 - Mar 24, 2017; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...